Skip to main content
Log in

Brönsted acid hydrotrope combined catalysis in water: a green approach for the synthesis of indoloquinoxalines and bis-tetronic acids

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

A Correction to this article was published on 26 May 2021

This article has been updated

Abstract

The present work describes the applications of Brönsted acid hydrotrope combined catalyst (BAHC) as a mild, efficient and reusable catalyst for synthesis of indoloquinoxalines and bis-tetronic acids in water. Using BAHC, we synthesized many indoloquinoxaline derivatives from isatins and o-phenylene diamine using 10 mol% PTSA in 40% aqueous hydrotropic (NaPTS) solution at room temperature with 83–90% yields. On the other hand, the reaction of tetronic acid with the aldehydes/isatins forms bis-tetronic acids with 83–88% yields through Knoevengel condensation-Michael addition pathway in same BHAC. Moreover, the BAHC can be recycled upto 5th cycles with slight decrease in product yields. The extremely simple operational methodology, green solvent, ambient reaction conditions and high yields render this approach extremely appealing for the synthesis of different heterocyclic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2

Similar content being viewed by others

Change history

References

  1. C.-J. Li, L. Chen, Chem. Soc. Rev. 35, 68 (2006)

    Article  PubMed  Google Scholar 

  2. V.R. Vemula, V. Lagishetty, S. Lingala, Int. J. Pharm. Sci. Rev. Res. 5, 41 (2010)

    CAS  Google Scholar 

  3. C. Neuberg, Biochem. Z. 76, 107 (1916)

    CAS  Google Scholar 

  4. N.S. Tavare, V.K. Jadhav, J. Chem. Eng. Data. 41, 1196 (1996)

    Article  CAS  Google Scholar 

  5. V. Srinivas, D. Balasubramanian, Langmuir 14(23), 6658 (1998)

    Article  Google Scholar 

  6. V. Srinivas, G.A. Rodley, K. Ravikumar, W.T. Robinson, M.M. Turnbull, Langmuir 13(12), 3235 (1997)

    Article  CAS  Google Scholar 

  7. A. Sapkal, S. Kamble, J. Heterocycl. Chem. 57(10), 3597 (2020)

    Article  CAS  Google Scholar 

  8. G. Rashinkar, S. Kamble, A. Kumbhar, R. Salunkhe, Trans. Met. Chem. 35, 185 (2010)

    Article  CAS  Google Scholar 

  9. S. Kamble, A. Kumbhar, G. Rashinkar, M. Barge, R. Salunkhe, Ultrason Sonochem. 19(4), 812 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. M. Barge, S. Kamble, A. Kumbhar, G. Rashinkar, R. Salunkhe, Monatsh. Chem. 144(8), 1213 (2013)

    Article  CAS  Google Scholar 

  11. S. Jadhav, A. Kumbhar, C. Rode, R. Salunkhe, Green Chem. 18, 1898 (2016)

    Article  CAS  Google Scholar 

  12. A. Patil, R. Salunkhe, Res. Chem. Intermed. 43, 4175 (2017)

    Article  CAS  Google Scholar 

  13. A. Patil, M. Barge, G. Rashinkar, R. Salunkhe, Mol. Divers. 19(3), 435 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. R. Pratap, V.J. Ram, Chem. Rev. 114(20), 10476 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. C.H. Jin, M. Krishnaiah, D. Sreenu, V.B. Subrahmanyam, H.-J. Park, S.-J. Park, Y.Y. Sheen, D.-K. Kim, Bioorg. Med. Chem. 22(9), 2724 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. D. Zych, A. Slodek, S. Krompiec, K. Malarz, A. Mrozek-Wilczkiewicz, R. Musiol, Chem. Select 3(24), 7009 (2018)

    CAS  Google Scholar 

  17. P.K. Paliwal, S.R. Jetti, S. Jain, Med. Chem. Res. 22(6), 2984 (2013)

    Article  CAS  Google Scholar 

  18. Q. Li, S. He, Y. Chen, F. Feng, W. Qu, H. Sun, Eur. J. Med. Chem. 158, 463 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. X. Wan, C. Li, M. Zhang, Y. Chen, Chem. Soc. Rev. 49, 2828 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. A. Slodek, D. Zych, A. Maroń, S. Golba, E. Schab-Balcerzak, H. Janeczek, M. Siwy, S. Maćkowski, Dyes Pigm. 166, 98 (2019)

    Article  CAS  Google Scholar 

  21. H. Lai, J. Hong, P. Liu, C. Yuan, Y. Li, Q. Fang, RSC Adv. 2, 2427 (2012)

    Article  CAS  Google Scholar 

  22. Y. Feng, D. Li, Q. Wang, S. Wang, X. Meng, Z. Shao, M. Zhu, X. Wang, Sens. Actuators B Chem. 225, 572 (2016)

    Article  CAS  Google Scholar 

  23. A. Slodek, D. Zych, S. Golba, S. Zimosz,  P. Gnida, E. Schab-Balcerzak, J. Mat. Chem. C. 7, 5830 (2019)

    Article  CAS  Google Scholar 

  24. M. Judith Percino, M. Cerón, P. Venkatesan, E. Pérez-Gutiérrez, P. Santos, P. Ceballos et al., RSC Adv. 9, 28704 (2019)

    Article  Google Scholar 

  25. M.S. Abdelfattah, T. Kazufumi, M. Ishibashi, J. Nat. Prod. 73(12), 1999 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. P.S. Chandrachood, A.R. Jadhav, D.R. Garud, N.R. Deshpande, V.G. Puranik, R.V. Kashalkar, Res. Chem. Intermed. 46, 5219 (2020)

    Google Scholar 

  27. G. Sakata, K. Makino, Y. Kurasawa, Heterocycles 27, 2481 (1988)

    Article  CAS  Google Scholar 

  28. K.R. Justin Thomas, M. Velusamy, J.T. Lin, C.H. Chuen, Y.T. Tao, Chem. Mater. 17(7), 1860 (2005)

    Article  CAS  Google Scholar 

  29. S. Dailey, J.W. Feast, R.J. Peace, I.C. Sage, S.Till, E.L.Wood, J. Mater. Chem. 11, 2238 (2001)

  30. M.J. Crossley, L.A. Johnston, Chem. Commun. 1122 (2002)

  31. M.M. Abdou, R.A. El-Saeed, M.A. Abozeid, M.G. Sadek, E. Zaki, Y. Barakat, H. Ibrahim, M. Fathy, S. Shabana, M. Amine, S. Bondock, Arab. J. Chem. 12(4), 464 (2019)

    Article  CAS  Google Scholar 

  32. A.L. Zografos, D. Georgiadis, Synthesis 3157 (2006)

    Google Scholar 

  33. D. Tejedor, F. García-Tellado, Org. Prep. Proced. Int. 36(1), 33 (2004)

  34. L. Vieweg, S. Reichau, R. Schobert, P.F. Leadlay, R.D. Süssmuth. Nat. Prod. Rep. 31(11), 1554 (2014)

  35. B.E. Roggo, F. Petersen, R. Delmendo, H.B. Jenny, H.H. Peter, J. Roesel, J. Antibiot. 47(2), 136 (1994)

    Article  CAS  Google Scholar 

  36. K. Rehse, U. Emisch, Arch. Pharm. 316(2), 115 (1983)

    Article  CAS  Google Scholar 

  37. K. Luk, S.A. Readshaw, J. Chem. Soc. Perkin Trans. 1(7), 1641 (1991)

    Article  Google Scholar 

  38. E.J. Murray, R.C. Crowley, A. Truman, S.R. Clarke, J.A. Cottam, G.P. Jadhav, V.R. Steele, P. O’Shea, C. Lindholm, A. Cockayne, S.R. Chhabra, W.C. Chan, P. Williams, J. Med. Chem. 57(6), 2813 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Dal Pozzo, A. Dansi, E. Neneghini, Bull. Chim. Farm. 113(5), 280 (1974)

    Google Scholar 

  40. F.R. Foden, J. McCormick, D.M. O’Mant, J. Med. Chem. 18(2), 199 (1975)

    Article  CAS  PubMed  Google Scholar 

  41. M. Andreoli, M. Persico, A. Kumar, N. Orteca, V. Kumar, A. Pepe, C. Fattorusso, et al., J. Med. Chem. 57(19), 7916 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A. Kumbhar, S. Kamble, M. Barge, G. Rashinkar, R. Salunkhe, Tetrahedron Lett. 53(22), 2756 (2012)

    Article  CAS  Google Scholar 

  43. R. Jain, K. Sharma, D. Kumar, Tetrahedron Lett. 53(46), 6236 (2012)

    Article  CAS  Google Scholar 

  44. R. Dowlatabadi, A. Khalaj, S. Rahimian, M. Montazeri, M. Amini, A. Shahverdi, E. Mahjub, Synth. Commun. 41, 1650 (2011)

    Article  CAS  Google Scholar 

  45. P.G. Hegade, M.M. Mane, J.D. Patil, D.M. Pore, Syn. Commun. 44(23), 3384 (2014)

    Article  CAS  Google Scholar 

  46. Z.Z. Zhang, H. Zhang, W.Z.-Q. Li, C.C. Zeng, R.-G. Zhong, Y.-B. She, RSC Adv. 1, 583 (2011)

    Google Scholar 

  47. M. Dabiri, Z.N. Tisseh, M. Bahramnejad, A. Bazgir, Ultrason. Sonochem. 18, 353 (2011)

    Article  Google Scholar 

  48. K.S. Pandit, U.V. Desai, P.P. Wadgaonkar, K.M. Kodam, Res. Chem. Intermed. 43, 141 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We like to show our appreciation to the University Grants Commission, Government of India, New Delhi, for enduring this work under the scheme of Major Research Project [F.No.41-182/2014 (SR)]. We also thankful to the Department of Chemistry, Shivaji University, Kolhapur for providing IR, 1H and 13C NMR Spectral analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trushant Lohar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The citation “20” was incorrectly linked to the DOI link “https://doi.org/10.1016%2Fj.dyepig.2019.03.028”. However, the correct DOI link should be “https://doi.org/10.1016/j.dyepig.2019.03.032”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbhar, A., Kanase, D., Mohite, S. et al. Brönsted acid hydrotrope combined catalysis in water: a green approach for the synthesis of indoloquinoxalines and bis-tetronic acids. Res Chem Intermed 47, 2263–2278 (2021). https://doi.org/10.1007/s11164-021-04430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04430-w

Keywords

Navigation