Skip to main content
Log in

Graphene oxide/Fe3O4/polyaniline nanocomposite as an efficient adsorbent for the extraction and preconcentration of ultra-trace levels of cadmium in rice and tea samples

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The magnetic graphene oxide–polyaniline (MGOPA) nanocomposite was synthesized through oxidative polymerization of aniline and at the presence of Fe3O4–GO. The composite was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and vibrating sample magnetometry. The as-synthesized adsorbent was used for the extraction and preconcentration of the ultra-trace amount of cadmium, followed by electrothermal atomic absorption spectrometry detections. Different parameters, in particular sample pH, adsorbent dose, sample volume, adsorption time, eluent type, and desorption time, were investigated. The optimum conditions were pH 8, a sample volume of 40 mL, 4.0 × 10–3 g of MGOPA, and 2 mL of nitric acid solution (2.0 mol L−1) as eluent. The responses were linear in the range of 1.0 × 10–2–1.5 × 10–1 µg L−1 with a detection limit of 3.6 × 10–3 µg L−1 and a relative standard deviation of 4.2% at 5.0 × 10–2 µg L−1. Also, excellent recoveries (90–95%) were obtained with an enrichment factor of 400. Further studies showed that the adsorption of Cd(II) onto the MGOPA follows the Langmuir isotherm with the maximum adsorption capacity of 1.4 × 102 mg g−1. The proposed method was successfully used for the determination of cadmium in different tea and rice samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Abbreviations

EF:

Enrichment factor;

ETAAS:

Electrothermal atomic absorption spectrometry;

FAAS:

Flame atomic absorption spectrometry;

FT-IR:

Fourier transform infrared spectroscopy;

GO:

Graphene oxide;

HOAc:

Acetic acid;

LOD:

Limit of detection;

MGOPA:

Magnetite graphene oxide–polyaniline;

MSPE:

Magnetic solid-phase extraction;

PANI:

Polyaniline;

RSD:

Relative standard deviation;

SEM:

Scanning electron microscopy;

SPE:

Solid-phase extraction;

VSM:

Vibrating sample magnetometer;

WHO:

World health organization;

XRD:

X-ray diffraction analysis

References

  1. F.S. de Dias, M.E.P.A. Guarino, A.L. Costa Pereira, P.P. Pedra, M.A. de Bezerra, S.G. Marchetti, Microchem. J. 146, 1095 (2019)

    Google Scholar 

  2. N. Altunay, M. Tuzen, B. Hazer, A. Elik, Food Chem. 321, 126690 (2020)

    CAS  PubMed  Google Scholar 

  3. A. Sixto, A. Mollo, M. Knochen, J. Food Compos. Anal. 82, 103229 (2019)

    CAS  Google Scholar 

  4. M. Karimi, F. Aboufazeli, H.R.L.Z. Zhad, O. Sadeghi, E. Najafi, Food Anal. Method. 7(3), 669 (2014)

    Google Scholar 

  5. A. Tiwari, N. Sharma, Res. Chem. Intermed. 41(4), 2043 (2015)

    CAS  Google Scholar 

  6. M. Payehghadr, S. Esmaeilpour, M. Kazem Rofouei, L. Adlnasab, J. Chem. 2013, 1 (2013)

    Google Scholar 

  7. M. Eskandarpour, P. Jamshidi, M.R. Moghaddam, J.B. Ghasmei, F. Shemirani, Res. Chem. Intermed. 45(5), 3141 (2019)

    CAS  Google Scholar 

  8. P. Jamshidi, M. Alvand, F. Shemirani, Microchim. Acta 186(8), 487 (2019)

    Google Scholar 

  9. R.M. de Oliveira, A.C.N. Antunes, M.A. Vieira, A.L. Medina, A.S. Ribeiro, Microchem. J. 124, 402 (2016)

    Google Scholar 

  10. L. Wang, X. Hang, Y. Chen, Y. Wang, X. Feng, Anal. Lett. 49(6), 818 (2016)

    CAS  Google Scholar 

  11. M. Tuzen, M. Soylak, D. Citak, H.S. Ferreira, M.G.A. Korn, M.A. Bezerra, J. Hazard. Mater. 162(2), 1041 (2009)

    CAS  PubMed  Google Scholar 

  12. Z.A. Alothman, M. Habila, E. Yilmaz, M. Soylak, Microchim. Acta 177(3), 397 (2012)

    CAS  Google Scholar 

  13. M. Soylak, L. Elçi, Int. J. Environ. Anal. Chem. 66(1), 51 (1997)

    CAS  Google Scholar 

  14. Q. Yin, Y. Zhu, S. Ju, W. Liao, Y. Yang, Res. Chem. Intermed. 42(5), 4985 (2016)

    CAS  Google Scholar 

  15. F. Faryadras, S.M. Yousefi, P. Jamshidi, F. Shemirani, Res. Chem. Intermed. 46(4), 2055 (2020)

    CAS  Google Scholar 

  16. N. Ozkantar, E. Yilmaz, M. Soylak, M. Tuzen, Food Chem. 321, 126737 (2020)

    CAS  PubMed  Google Scholar 

  17. S. Sadeghi, M. Jahani, Food Anal. Method. 7(10), 2084 (2014)

    Google Scholar 

  18. F. Iranzad, M. Gheibi, M. Eftekhari, Int. J. Environ. Anal. Chem. 98(1), 16 (2018)

    CAS  Google Scholar 

  19. A. Al-Kinani, M. Eftekhari, M. Gheibi, M. Chamsaz, Spectrosc. Lett. 51(6), 287 (2018)

    CAS  Google Scholar 

  20. J.-H. Deng, X.-R. Zhang, G.-M. Zeng, J.-L. Gong, Q.-Y. Niu, J. Liang, Chem. Eng. J. 226, 189 (2013)

    CAS  Google Scholar 

  21. M.C. Barciela-Alonso, V. Plata-García, A. Rouco-López, A. Moreda-Piñeiro, P. Bermejo-Barrera, Microchem. J. 114, 106 (2014)

    CAS  Google Scholar 

  22. S. Su, B. Chen, M. He, B. Hu, Z. Xiao, Talanta 119, 458 (2014)

    CAS  PubMed  Google Scholar 

  23. S. Nazari, A. Mehri, A.S. Hassannia, Microchim. Acta 184(9), 3239 (2017)

    CAS  Google Scholar 

  24. S. Yan, T.-T. Qi, D.-W. Chen, Z. Li, X.-J. Li, S.-Y. Pan, J. Chromatogr. A 1347, 30 (2014)

    CAS  PubMed  Google Scholar 

  25. Q.-L. Li, S.-F. Guo, Y. Zhang, R. Wo, R.-S. Zhao, W. Jiang, J. Hazard. Mater. 396, 122741 (2020)

    CAS  PubMed  Google Scholar 

  26. J. Feizy, M. Jahani, A. Beigbabaei, Chromatographia 82(6), 917 (2019)

    CAS  Google Scholar 

  27. R. Mateos, S. Vera, A.M. Díez-Pascual, M.P. San Andrés, J. Food Compos. Anal. 62, 223 (2017)

    CAS  Google Scholar 

  28. Y. Liu, L. Chen, Y. Li, P. Wang, Y. Dong, J. Environ. Chem. Eng. 4(1), 825 (2016)

    CAS  Google Scholar 

  29. P. Khorshidi, R.H.S.M. Shirazi, M. Miralinaghi, E. Moniri, S. Saadi, Res. Chem. Intermed. 46(7), 3607 (2020)

    CAS  Google Scholar 

  30. S. Sadeghi, E. Fooladi, M. Malekaneh, Appl. Biochem. Biotechnol. 175(3), 1603 (2015)

    CAS  PubMed  Google Scholar 

  31. J. Kim, S. Kim, Res. Chem. Intermed. 40(7), 2519 (2014)

    CAS  Google Scholar 

  32. M. Farajvand, K. Farajzadeh, G. Faghani, Mater. Res. Express 5(7), 075017 (2018)

    Google Scholar 

  33. S. Sadeghi, E. Fooladi, M. Malekaneh, Electroanalysis 27(1), 242 (2015)

    CAS  Google Scholar 

  34. X. Yu, C.Y.X. Lim, B. Dong, K. Hadinoto, LWT-Food Sci. Technol. 127, 109410 (2020)

    CAS  Google Scholar 

  35. S. Mohajer, M. Chamsaz, M.H. Entezari, Anal. Methods 6(23), 9490 (2014)

    CAS  Google Scholar 

  36. S. Karabulut, A. Karabakan, A. Denizli, Y. Yürüm, Sep. Sci. Technol. 36(16), 3657 (2001)

    CAS  Google Scholar 

  37. A. Abdar, A. Sarafraz-Yazdi, A. Amiri, N. Bagheri, J. Sep. Sci. 39(14), 2746 (2016)

    CAS  PubMed  Google Scholar 

  38. S. Sadeghi, M. Jahani, Food Chem. 141(2), 1242 (2013)

    CAS  PubMed  Google Scholar 

  39. L. Renjie, L. Liu, F. Yang, Water Sci. Technol. 72, 2062 (2015)

    Google Scholar 

  40. M. Tuzen, A. Elik, B. Hazer, S. Şimşek, N. Altunay, Food Chem. 333, 127504 (2020)

    CAS  PubMed  Google Scholar 

  41. T.A. Saleh, S.H. Al-Ruwayshid, A. Sarı, M. Tuzen, Eur. Polym. J. 130, 109698 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ferdowsi University of Mashhad for financial support of this work.

Funding

This work was supported by the Ferdowsi University of Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Jahani.

Ethics declarations

Conflict of interest

Elias Aboobakri declares that he has no conflict of interest. Moslem Jahani declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

A statement regarding informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboobakri, E., Jahani, M. Graphene oxide/Fe3O4/polyaniline nanocomposite as an efficient adsorbent for the extraction and preconcentration of ultra-trace levels of cadmium in rice and tea samples. Res Chem Intermed 46, 5181–5198 (2020). https://doi.org/10.1007/s11164-020-04256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04256-y

Keywords

Navigation