Skip to main content
Log in

Composite of natural bamboo (Dendrocalamus strictus) and TiO2: Its photocatalytic potential in the degradation of methylene blue under the direct irradiation of solar light

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Composites of visible-light-active bamboo charcoal powder (BCP)/TiO2 were fabricated by the straight calcination method by using TiCl4 as the source of titanium and natural bamboo as the carbon source. The dispersion of TiO2 nanoparticles was observed onto the surface of the BCP. The introduction of microstructure sizes of the bamboo powder played an important role in enhancing the optical properties of BCP/TiO2 composites. The composites of BCP/TiO2 showed the photocatalytic activities both under visible-light irradiation and UV irradiation. The methylene blue dye was used as the experimental check-up. The photodegradation reactions followed zero-order and pseudo-first-order kinetics. In the time duration of 100 min, about 58.31% and 95% of methylene blue were degraded by TiO2 and BCP/TiO2, respectively; 60 min more time was required by TiO2 to achieve 93% of degradation. This suggests that addition of BCP helps in the reduction in time and also shows high durability after up to four cycles having the degradation efficiencies of 95%, 94.1%, 92.7% and 86.6%, respectively. Hence, this research could overlay in the domain of green energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Okello, B. Tomasello, N. Greggio, N. Wambiji, M. Antonellini, Water 7(3), 1264 (2015)

    Google Scholar 

  2. P. Poizot, F. Dolhem, Energy Environ. Sci. 4, 2003 (2011)

    CAS  Google Scholar 

  3. D. Satterthwaite, G. McGranahan, C. Tacoli, Philos. Trans. R. Soc. Lond. B Biol. Sci.365, 2809 (2010)

    PubMed  PubMed Central  Google Scholar 

  4. C.A. Mgbemene, C.C. Nnaji, C. Nwozor, J. Environ. Sci. Technol. 9, 301 (2016)

    CAS  Google Scholar 

  5. P. Literathy, NATO ASI Series (Series 2: Environment). Springer, Dordrecht 20, 21 (1996)

    Google Scholar 

  6. J. Li, K.F. See, J. Chi, J. Clean. Prod. 229, 1412 (2019)

    Google Scholar 

  7. F.K. Katrivesis, A.D. Karela, V.G. Papadakis, C.A. Paraskeva, J. Water Proc. Eng. 27, 193 (2019)

    Google Scholar 

  8. T. Threrujirapapong, W. Khanitchaidecha, A. Nakaruk, Environ. Nanotechnol. Monit. 8, 163 (2017)

    Google Scholar 

  9. W. Yang, J. Wang, M. Hua, Y. Zhang, X. Shi, Chemosphere 203, 68 (2018)

    CAS  PubMed  Google Scholar 

  10. R. Natarajan, F.A. Fazari, A.A. Saadi, Environ. Technnol. Inno. 10, 71 (2018)

    Google Scholar 

  11. X. Guo, Y.Z. Zhang, F. Zhang, Q. Li, D.H. Anjum, H. Liang, Y. Liu, C.S. Liu, H.N. Alshareef, H. Pang, J. Mater. Chem. A 7, 15969 (2019)

    CAS  Google Scholar 

  12. M. Yuan, X. Guo, N. Li, Q. Li, S. Wang, C.S. Liu, H. Pang, Sens. Actuator B Chem. 297, 126809 (2019)

    CAS  Google Scholar 

  13. B. Li, G.X. Zhang, K.S. Huang, L.F. Qiao, H. Pang, Rare Met. 36, 457 (2017)

    CAS  Google Scholar 

  14. Y. Zhang, J. Liu, S.L. Li, Z.M. Su, Y.Q. Lan, Energy Chem. 1, 100021 (2019)

    Google Scholar 

  15. X. Xiao, L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 49, 301 (2020)

    CAS  PubMed  Google Scholar 

  16. Q. Liu, Z. Zhang, Catal. Sci. Technol. 9, 4821 (2019)

    CAS  Google Scholar 

  17. Y. Liu, J. Yang, B. Wu, W. Zhang, X. Zhang, C. Shan, Q. Liu, Colloids Surf. A Physicochem. Eng. Asp. 586, 124193 (2020)

    Google Scholar 

  18. Y. Liu, X. Zhang, B. Wu, H. Zhao, W. Zhang, C. Shan, J. Yang, Q. Liu, Chemistryselect. 4, 12445 (2019)

    CAS  Google Scholar 

  19. S. Zhang, Y. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, EnergyChem 1, 100013 (2019)

    Google Scholar 

  20. P. Arbab, B. Ayati, M.R. Ansari, ProcessSaf. Environ. 121, 87 (2019)

    CAS  Google Scholar 

  21. L. Wang, J. Zhao, H. Liu, J. Huang, J. Taiwan Inst. Chem. E 93, 590 (2018)

    CAS  Google Scholar 

  22. F.M. Pesci, G. Wang, D.R. Klug, Y. Li, A.J. Cowan, JPhysChem C Nanomater. Interfaces. 117, 25837 (2013)

    CAS  Google Scholar 

  23. S.L. Gora, R. Liang, Y.N. Zhou, S.A. Andrews, J. Environ. Chem. Eng. 6, 197 (2018)

    CAS  Google Scholar 

  24. J. Wang, Q. Zhang, X. Shao, J. Ma, G. Tian, Chemosphere 207, 377 (2018)

    CAS  PubMed  Google Scholar 

  25. S. Roy, G.G. Botte, RSC Adv. 8, 5388 (2018)

    CAS  Google Scholar 

  26. J.W. Zheng, A. Bhattcahrayya, P. Wu, Z. Chen, J. Highfield, Z. Dong, R. Xu, J. Phys. Chem. C 114(15), 7063 (2010)

    CAS  Google Scholar 

  27. P. Pascariu, C. Cojocaru, N. Olaru, P. Samoila, A. Airinei, M. Ignat, L. Sacarescu, D. Timpu, J. Environ. Manag. 239, 225 (2019)

    CAS  Google Scholar 

  28. F. Yan, D. Kong, Y. Fu, Q. Ye, Y. Wang, L. Chen, J. Colloid Interface Sci. 466, 268 (2016)

    CAS  PubMed  Google Scholar 

  29. H. Lin, Y. Liu, J. Deng, S. Xie, X. Zhao, J. Yang, K. Zhang, Z. Han, H. Dai, J. Photochem. Photobiol. A 336, 105 (2017)

    CAS  Google Scholar 

  30. M.S. Nasrollahzadeh, M. Hadavifar, S. Ghasemi, M.S. Chamjangali, Appl. Water Sci. 8, 104 (2018)

    Google Scholar 

  31. P. Zhang, X. Li, C. Shao, Y. Liu, J. Mater. Chem. A 3, 3281 (2015)

    CAS  Google Scholar 

  32. R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, J. Mater. Chem. A 5, 3717 (2017)

    CAS  Google Scholar 

  33. A.F. Cláudiode, J.G.Z. Aldo, J. Braz. Chem. Soc. 17, 1151 (2006)

    Google Scholar 

  34. N. Liang, M. Wang, L. Jin, S.S. Huang, W.L. Chen, M. Xu, Q.Q. He, J.T. Zai, N.H. Fang, X.F. Qian, A.C.S. Appl, Mater. Interfaces. 6, 11698 (2014)

    CAS  Google Scholar 

  35. R. Bhatt, I. Bhaumik, S. Ganesamoorthy, A.K. Karnal, M.K. Swami, H.S. Patel et al., Phys. Status Solidi. 209, 176 (2012)

    CAS  Google Scholar 

  36. R.G. Pearson, Inorg. Chem. 27, 734 (1988)

    CAS  Google Scholar 

  37. S. Varnagiris, A. Medvids, M. Lelis, D. Milcius, A. Antuzevics, J. Photochem. Photobiol. A. 382, 111941 (2019)

    CAS  Google Scholar 

  38. S.F. Shaikh, R.S. Mane, B.K. Min, Y.J. Hwang, O.S. Joo, Sci. Rep. 6, 20103 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. K.K.M. Ahmad, A.C. Rana, V.K. Dixit, Pharmacogn. Mag. 1, 48 (2005)

    Google Scholar 

  40. P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358, 122 (2000)

    CAS  Google Scholar 

  41. H. Lu, W. Fan, H. Dong, L. Liu, Environ. Sci. NANO 4, 406 (2017)

    CAS  Google Scholar 

  42. T. Lv, J. Zhao, M. Chen, K. Shen, D. Zhang, J. Zhang, G. Zhang, Q. Liu, Mater. (Basel) 11(10), 1946 (2018)

    Google Scholar 

  43. M.A. Ahmed, Z.M. Abou-Gamra, A.M. Salem, J. Environ. Chem. Eng. 5(5), 4251 (2017)

    CAS  Google Scholar 

  44. Z.M. Abou-Gamra, M.A. Ahmed, J. Photochem. Photobiol. B 160, 134 (2016)

    CAS  PubMed  Google Scholar 

  45. Y. Yang, L. Xu, H. Wang, W. Wang, L. Zhang, Mater. Des. 108, 632 (2016)

    CAS  Google Scholar 

  46. D. Zhao, X. Yang, C. Chen, X. Wang, J. Colloid Interface Sci. 398, 234 (2013)

    CAS  PubMed  Google Scholar 

  47. H.A. Le, L.T. Linh, S. Chin, J. Jurng, Powder Technol. 225, 167 (2012)

    CAS  Google Scholar 

  48. F. Echabbi, M. Hamlich, S. Harkati, A. Jouali, S. Tahiri, S. Lazar, R. Lakhmiri, M. Safi, J. Environ. Chem. Eng. 7(5), 103293 (2019)

    CAS  Google Scholar 

  49. F. Kazemi, Z. Mohamadnia, B. Kaboudin, Z. Karimi, J. Appl. Polym. Sci. 133, 43386 (2016)

    Google Scholar 

  50. Y. Li, Y. Wang, J. Kong, H. Jia, Z. Wang, Appl. Surf. Sci. 344, 176 (2015)

    CAS  Google Scholar 

  51. S.P. Deshmukh, D.P. Kale, S. Kar, S.R. Shirsath, B.A. Bhanvase, V.K. Saharan, S.H. Sonawane, Nano-Struct. Nano-Objects 21, 100407 (2020)

    Google Scholar 

  52. A. Aghamali, M. Khosravi, H. Hamishehkar, N. Modirshahla, M.A. Behnajady, Mater. Sci. Semiconduct. Proc. 87, 142 (2018)

    CAS  Google Scholar 

  53. C. Chi, J. Pan, M. You, Z. Dong, W. Zhao, C. Song, Y. Zheng, C. Li, J. Phys. Chem. Solids 114, 173 (2018)

    CAS  Google Scholar 

  54. R.R. Bhosale, S.R. Pujari, G.G. Muley, S.H. Patil, K.R. Patil, M.F. Shaikh, A.B. Gambhire, Sol. Energy 103, 473 (2014)

    CAS  Google Scholar 

  55. M. Nowak, B. Kauch, P. Szperlich, Rev. Sci. Instrum. 80, 046107 (2009)

    CAS  PubMed  Google Scholar 

  56. Y. Cheng, M. Zhang, G. Yao, L. Yang, J. Tao, Z. Gong, G. He, Z. Sun, J. Alloys Compd. 662, 179 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to central research facility (CRF) of IIT (ISM) Dhanbad, Jharkhand for carrying out the materials characterization and I would also like to thank Dept. of Physics of our institute for carrying the PL measurement. My beloved mother Zohra Khatoon for providing bamboo pieces from the forest. My true inspiration Haji Md Mutalib Ansari (Father) for his logical discussion behind the work. My allrounder mentor Prof. P. Saravanan for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nawaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, A. Composite of natural bamboo (Dendrocalamus strictus) and TiO2: Its photocatalytic potential in the degradation of methylene blue under the direct irradiation of solar light. Res Chem Intermed 46, 2731–2747 (2020). https://doi.org/10.1007/s11164-020-04116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04116-9

Keywords

Navigation