Skip to main content
Log in

Synthesis of magnetic CuFe2O4 self-assembled hollow nanospheres and its application for degrading methylene blue

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Using ethylene glycol as solvent and PVP as structure-directing agent, CuFe2O4 nanospheres were successfully prepared by solvothermal method. The crystal structure, morphology, magnetic properties, and pore-size distribution of samples were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope, VSM, and BET, respectively. The effects of various preparation factors on the crystal form and morphology of the obtained samples were systematically discussed. The result exhibited that the self-assembled hollow nanospheres with good crystal form and morphology are obtained under the conditions of 0.50 g PVP, 9 mmol NaAc, reaction temperature of 180 °C, and reaction time of 24 h. The catalytic activity of CuFe2O4 hollow nanospheres was evaluated by the degradation of methylene blue (MB) and the possible degradation mechanism and pathway of MB in the CuFe2O4/H2O2 photo-Fenton-like system were proposed. In addition, the properties of CuFe2O4 particles prepared by different methods were compared and analyzed. The sample synthesized by solvothermal method has a large specific surface area and excellent magnetic properties. Furthermore, the increase in the photoelectric response and the conductivity are beneficial to the improvement of catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Shi, A. Tian, J. You, H. Yang, Y. Yang, X. Xue, J. Hazard. Mater. 353, 182 (2018)

    CAS  PubMed  Google Scholar 

  2. Q. Qin, Y. Liu, X. Li, T. Sun, Y. Xu, RSC Adv. 8, 1071 (2018)

    CAS  Google Scholar 

  3. M. Munoz, G. Pliego, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Chemosphere 109, 34 (2014)

    CAS  PubMed  Google Scholar 

  4. H. Zangeneh, A.A.L. Zinatizadeh, M. Feizy, J. Ind. Eng. Chem. 20, 1453 (2014)

    CAS  Google Scholar 

  5. W. Wan, Y. Zhang, R. Ji, B. Wang, F. He, ACS Omega 2, 6104 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. G. Pliego, J.A. Zazo, J.A. Casas, J.J. Rodriguez, J. Hazard. Mater. 252–253, 180 (2013)

    PubMed  Google Scholar 

  7. S. Bae, D. Kim, W. Lee, Appl. Catal. B Environ. 134, 93 (2013)

    Google Scholar 

  8. X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Sci. Rep. 5, 10632 (2015)

    PubMed  PubMed Central  Google Scholar 

  9. W. Zhu, J. Zhang, H. Li, Y. Chao, W. Jiang, S. Yin, H. Liu, RSC Adv. 2, 658 (2011)

    Google Scholar 

  10. J. Zhang, W. Zhu, H. Li, W. Jiang, Y. Jiang, W. Huang, Y. Yan, Green Chem. 11, 1801 (2009)

    CAS  Google Scholar 

  11. S. Guo, G. Zhang, RSC Adv. 6, 2537 (2016)

    CAS  Google Scholar 

  12. C. Liu, P. Zhang, C. Zeng, G. Zeng, G. Xu, Y. Huang, J. Environ. Sci. 28, 37 (2015)

    Google Scholar 

  13. R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, Appl. Catal. B Environ. 187, 428 (2016)

    CAS  Google Scholar 

  14. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Yang, Y. Ren, L. Zuo, Bioresour. Technol. 100, 4139 (2009)

    CAS  PubMed  Google Scholar 

  15. N. Panda, H. Sahoo, S. Mohapatra, J. Hazard. Mater. 185, 359 (2011)

    CAS  PubMed  Google Scholar 

  16. X. Li, Y. Huang, C. Li, J. Shen, Y. Deng, Chem. Eng. J. 260, 28 (2015)

    CAS  Google Scholar 

  17. M. Ranjani, D.J. Yoo, G.G. Kumar, J. Membr. Sci. 555, 497 (2018)

    CAS  Google Scholar 

  18. R. Sharma, V. Kumar, S. Bansal, S. Singhala, J. Mol. Catal. A Chem. 402, 53 (2015)

    CAS  Google Scholar 

  19. C. Karthikeyan, K. Ramachandran, S. Sheet, D.J. Yoo, Y.S. Lee, Y. Satish Kumar, A.R. Kim, G.G. Kumar, ACS Sustain. Chem. Eng. 5, 4897 (2017)

    CAS  Google Scholar 

  20. M. Vinothkannan, C. Karthikeyan, G.G. Kumar, A.R. Kim, D.J. Yoo, Spectrochim. Acta Part A 136, 256 (2015)

    CAS  Google Scholar 

  21. J. Salamon, Y. Sathishkumar, K. Ramachandran, Y.S. Lee, D.J. Yoo, A.R. Kim, G.G. Kumar, Biosens. Bioelectron. 64, 269 (2015)

    CAS  PubMed  Google Scholar 

  22. G.G. Kumar, C.J. Kirubaharan, D.J. Yoo, A.R. Kim, Int. J. Hydrogen Energy 41, 13208 (2016)

    Google Scholar 

  23. G.G. kumar, G. Amala, and S.M. Gowtham, RSC Adv. 7, 36949 (2017).

    CAS  Google Scholar 

  24. J. Kang, H. Zhang, X. Duan, H. Sun, X. Tan, S. Liu, S. Wang, Chem. Eng. J. 362, 251 (2019)

    CAS  Google Scholar 

  25. T.R. Kumar, G.G. Kumar, A. Manthiram, Adv. Energy Mater. 9, 1803238 (2019)

    Google Scholar 

  26. M. Ranjani, Y. Sathishkumar, Y.S. Lee, D.J. Yoo, A.R. Kim, G.G. Kumar, RSC Adv. 5, 57804 (2015)

    CAS  Google Scholar 

  27. D.H.K. Reddy, Y.-S. Yun, Coord. Chem. Rev. 315, 90 (2016)

    CAS  Google Scholar 

  28. D. Miao, J. Peng, M. Wang, S. Shao, L. Wang, S. Gao, Chem. Eng. J. 346, 1 (2018)

    CAS  Google Scholar 

  29. M. Zhu, D. Meng, C. Wang, G. Diao, ACS Appl. Mater. Interfaces 5, 6030 (2013)

    CAS  PubMed  Google Scholar 

  30. J. Jung-König, C. Feldmann, Z. Anorg. Allg. Chem. 643, 1 (2017)

    Google Scholar 

  31. Z. Li, X. Lai, H. Wang, D. Mao, C. Xing, D. Wang, J. Phys. Chem. C 113, 2792 (2009)

    CAS  Google Scholar 

  32. Y. Song, P. Shao, J. Tian, W. Shi, S. Gao, J. Qi, X. Yan, F. Cui, Ceram. Int. 42, 2074 (2016)

    CAS  Google Scholar 

  33. X. Zhang, Y. Zhang, L. Gao, H. Yu, Y. Wei, J. Colloid Interface Sci. 452, 24 (2015)

    CAS  PubMed  Google Scholar 

  34. S. Yang, C. Xu, S. Hu, W.S. Wang, J. Yu, L. Zhen, Bull. Korean Chem. Soc. 37, 522 (2016)

    CAS  Google Scholar 

  35. S.M. Lam, M.W. Kee, J.C. Sin, Mater. Chem. Phys. 212, 35 (2018)

    CAS  Google Scholar 

  36. J. Feng, Z. Zhang, M. Gao, M. Gu, J. Wang, W. Zeng, Y. Lv, Y. Ren, Z. Fan, Mater. Chem. Phys. 223, 758 (2019)

    CAS  Google Scholar 

  37. T.L. Lai, C.W. Lai, K.M. Lee, S.W. Chook, C.K. Yang, S.H. Chong, J.C. Juan, J. Alloys Compd. 801, 502 (2019)

    CAS  Google Scholar 

  38. P. Chen, X. Xing, H. Xie, Q. Sheng, H. Qu, Chem. Phys. Lett. 660, 176 (2016)

    CAS  Google Scholar 

  39. S. Kameoka, T. Tanabe, A.P. Tsai, Appl. Catal. A Gen. 375, 163 (2010)

    CAS  Google Scholar 

  40. B.K. Chatterjee, K. Bhattacharjee, A. Dey, C.K. Ghosh, K.K. Chattopadhyay, Dalton Trans. 43, 7930 (2014)

    CAS  PubMed  Google Scholar 

  41. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Dalton Trans. 44, 17883 (2015)

    CAS  PubMed  Google Scholar 

  42. G.I. Shakibaei, R. Ghahremanzadeh, A. Bazgir, Monatsh. Chem. 145, 1009 (2014)

    CAS  Google Scholar 

  43. Y. Wu, Y. He, T. Wu, T. Chen, W. Weng, H. Wan, Mater. Lett. 61, 3174 (2007)

    CAS  Google Scholar 

  44. H. Wang, C. Yang, L. Wang, D. Kong, Y. Zhang, Z. Yang, Chem. Commun. 47, 4439 (2011)

    CAS  Google Scholar 

  45. G. Zhang, Y. Gao, Y. Zhang, Y. Guo, Environ. Sci. Technol. 44, 6384 (2010)

    CAS  PubMed  Google Scholar 

  46. H.P. Jing, C.C. Wang, Y.W. Zhang, P. Wang, R. Li, RSC Adv. 4, 54454 (2014)

    CAS  Google Scholar 

  47. G.J. Rani, M.A.J. Rajan, G.G. Kumar, Res. Chem. Intermed. 43, 2669 (2017)

    Google Scholar 

  48. Y. Feng, C. Liao, K. Shih, Chemosphere 154, 573 (2016)

    CAS  PubMed  Google Scholar 

  49. L. Wolski, M. Ziolek, Appl. Catal. B Environ. 224, 634 (2018)

    CAS  Google Scholar 

  50. T.B. Nguyen, R.A. Doong, C.P. Huang, C.W. Chen, C.D. Dong, Sci. Total Environ. 675, 531 (2019)

    CAS  PubMed  Google Scholar 

  51. C.L. Lee, L.C. Kuo, Y.C. Huang, Y.W. Yen, Electrochem. Commun. 8, 697 (2006)

    CAS  Google Scholar 

  52. M. Zhu, D. Meng, C. Wang, G. Diao, ACS Appl. Mater. Inter. 5, 6030 (2013)

    CAS  Google Scholar 

  53. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004)

    CAS  Google Scholar 

  54. A.B. Ghomi, V. Ashayeri, Iran. J. Catal. 2, 135 (2012)

    CAS  Google Scholar 

  55. Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Ind. Eng. Chem. Res. 51, 11700 (2012)

    CAS  Google Scholar 

  56. Y. Shen, Y. Wu, H. Xu, J. Fu, X. Li, Q. Zhao, Y. Hou, Mater. Res. Bull. 48, 4216 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Fundamental Research Funds for the Universities of Gansu Province and Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Xu, Y., Wang, K. et al. Synthesis of magnetic CuFe2O4 self-assembled hollow nanospheres and its application for degrading methylene blue. Res Chem Intermed 46, 853–869 (2020). https://doi.org/10.1007/s11164-019-03994-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03994-y

Keywords

Navigation