Skip to main content
Log in

Cu(CH3CN)4PF6 immobilized on halloysite as efficient heterogeneous catalyst for oxidation of allylic C–H bonds in olefins under mild reaction condition

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Considering the importance of oxidation of allylic C–H bonds in olefins and the unresolved challenging issues, such as long reaction time and the large quantity of catalyst required, and encouraged by the excellent performance of halloysite as a catalyst support, a novel catalytic system was developed to promote this reaction efficiently. To prepare the catalyst, halloysite was first functionalized with ionic liquid then reacted with 2-aminopyrimidine to afford a potential support, Hal-P. The latter was then used for in situ immobilization of Cu(CH3CN)4PF6 and applied to promote the reaction of cycloolefin and tert-butyl p-nitrobenzoperoxoate under mild reaction condition. The results showed that the nature of copper could play an important role in the catalytic activity. Moreover, the presence of ionic liquid and 2-aminopyrimidine in the structure could improve the activity of the final catalyst. Notably, low amounts of catalyst could catalyze the reaction to afford corresponding allylic esters in good yield. It was also found that the reaction was size selective and that cyclic olefins with lower strain could undergo this reaction more effectively. Study of the recyclability of the catalyst confirmed that it was recyclable and could be recovered and recycled for five consecutive reaction runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.B. Andrus, J.C. Lashley, Tetrahedron 58, 845 (2002)

    Article  CAS  Google Scholar 

  2. J. Eames, M. Watkinson, Angew. Chem. Int. Ed. 40, 3567 (2001)

    Article  CAS  Google Scholar 

  3. L. Faraji, S. Samadi, K. Jadidi, B. Notash, Bull. Korean Chem. Soc. 35, 1989 (2014)

    Article  CAS  Google Scholar 

  4. Z.-S. Hong, Y. Cao, J.-F. Deng, Mater. Lett. 52, 34 (2002)

    Article  CAS  Google Scholar 

  5. M. Kharasch, G. Sosnovsky, N. Yang, J. Am. Chem. Soc. 81, 5819 (1959)

    Article  CAS  Google Scholar 

  6. I. Moiseev, M. Vargaftik, Coord. Chem. Rev. 248, 2381 (2004)

    Article  CAS  Google Scholar 

  7. D.J. Rawlinson, G. Sosnovsky, Synthesis 1972, 1 (1972)

    Article  Google Scholar 

  8. S. Samadi, K. Jadidi, B. Notash, Tetrahedron Asymmetry 24, 269 (2013)

    Article  CAS  Google Scholar 

  9. S. Samadi, S. Nazari, H. Arvinnezhad, K. Jadidi, B. Notash, Tetrahedron 69, 6679 (2013)

    Article  CAS  Google Scholar 

  10. R. Hayes, T.W. Wallace, Tetrahedron Lett. 31, 3355 (1990)

    Article  CAS  Google Scholar 

  11. J. Ficini, J. d’Angelo, Tetrahedron Lett. 17, 2441 (1976)

    Article  Google Scholar 

  12. E. Alvarez, M.T. Diaz, R. Perez, J.L. Ravelo, A. Regueiro, J.A. Vera, D. Zurita, J.D. Martin, J. Org. Chem. 59, 2848 (1994)

    Article  CAS  Google Scholar 

  13. E. Corey, J. Lee, J. Am. Chem. Soc. 115, 8873 (1993)

    Article  CAS  Google Scholar 

  14. M. Massaro, C.G. Colletti, G. Lazzara, S. Milioto, R. Noto, S. Riela, J. Mater. Chem. A 5, 13276 (2017)

    Article  CAS  Google Scholar 

  15. P. Pasbakhsh, G.J. Churchman, Natural Mineral Nanotubes: Properties and Applications. Apple Academic Press (2015)

  16. M. Massaro, G. Lazzara, S. Milioto, R. Noto, S. Riela, J. Mater. Chem. B 5, 2867 (2017)

    Article  CAS  Google Scholar 

  17. M. Massaro, V. Schembri, V. Campisciano, G. Cavallaro, G. Lazzara, S. Milioto, R. Noto, F. Parisi, S. Riela, RSC Adv. 6, 55312 (2016)

    Article  CAS  Google Scholar 

  18. J. Tully, R. Yendluri, Y. Lvov, Biomacromolecules 17, 615 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhang, A. Tang, H. Yang, J. Ouyang, Appl. Catal. A 119, 8 (2016)

    CAS  Google Scholar 

  20. G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, Chem. Rec. 18, 1 (2018)

    Article  CAS  Google Scholar 

  21. P. Yuan, D. Tan, F. Annabi-Bergaya, Appl. Clay Sci. 112–113, 75 (2015)

    Article  CAS  Google Scholar 

  22. Y. Zhang, A. Tang, H. Yang, J. Ouyang, Appl. Clay Sci. 119, 8 (2016)

    Article  CAS  Google Scholar 

  23. J. Zhang, D. Zhang, A. Zhang, Z. Jia, D. Jia, Iran. Polym. J. 22, 501 (2013)

    Article  CAS  Google Scholar 

  24. B. Szczepanik, P. Rogala, P.M. Słomkiewicz, D. Banaś, A. Kubala-Kukuś, L. Stabrawa, Appl. Clay Sci. 149, 118 (2017)

    Article  CAS  Google Scholar 

  25. B. Szczepanik, P. Słomkiewicz, Appl. Clay Sci. 124–125, 31 (2016)

    Article  CAS  Google Scholar 

  26. R. Zhai, B. Zhang, L. Liu, Y. Xie, H. Zhang, J. Liu, Catal. Commun. 12, 259 (2010)

    Article  CAS  Google Scholar 

  27. S. Kumar-Krishnan, A. Hernandez-Rangel, U. Pal, O. Ceballos-Sanchez, F.J. Flores-Ruiz, E. Prokhorov, O. Arias de Fuentes, R. Esparza, M. Meyyappan, J. Mater. Chem. B 4, 2553 (2016)

    Article  CAS  Google Scholar 

  28. D. Tan, P. Yuan, F. Annabi-Bergaya, D. Liu, L. Wang, H. Liu, H. He, Appl. Clay Sci. 96, 50 (2014)

    Article  CAS  Google Scholar 

  29. N. Sabbagh, A. Akbari, N. Arsalani, B. Eftekhari-Sis, H. Hamishekar, Appl. Clay Sci. 148, 48 (2017)

    Article  CAS  Google Scholar 

  30. S. Battistoni, A. Dimonte, E. Ubaldi, Y. Lvov, V. Erokhin, J. Nanosci. Nanotechnol. 17, 5310 (2017)

    Article  CAS  Google Scholar 

  31. V.A. Vinokurov, A.V. Stavitskaya, Y.A. Chudakov, E.V. Ivanov, L.K. Shrestha, K. Ariga, Y.A. Darrat, Y.M. Lvov, Sci. Technol. Adv. Mater. 18, 147 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Yang, M. Du, M. Zhang, H. Zhu, P. Wang, M. Zou, Nanomater. Nanotech. 5, 1 (2015)

    Article  CAS  Google Scholar 

  33. Y. Zhang, X. He, J. Ouyang, H. Yang, Sci. Rep. 3, 2948 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Y. Zhang, J. Ouyang, H. Yang, Appl. Clay Sci. 95, 252 (2014)

    Article  CAS  Google Scholar 

  35. P. Yuan, A. Thill, F. Bergaya, Elsevier DOI, (2016)

  36. S. Sadjadi, M.M. Heravi, M. Malmir, Res. Chem. Intermed. e4113 (2018)

  37. S. Sadjadi, T. Hosseinnejad, M. Malmir, M.M. Heravi, New J. Chem. 41, 13935 (2017)

    Article  CAS  Google Scholar 

  38. P. Yuan, P.D. Southon, Z. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, C.J. Kepert, J. Phys. Chem. C 112, 15742 (2008)

    Article  CAS  Google Scholar 

  39. M. Massaro, C.G. Colletti, G. Lazzara, S. Guernelli, R. Noto, S. Riela, ACS Sustain. Chem. Eng. 5, 3346 (2017)

    Article  CAS  Google Scholar 

  40. S. Samadi, A. Ashouri, M. Ghambarian, RSC Adv. 7, 6679 (2017)

    Article  Google Scholar 

  41. S. Sadjad, M.M. Heravi, M. Malmir, Carbohydr. Polym. 186, 25 (2018)

    Article  CAS  Google Scholar 

  42. N. Bahri-Laleh, S. Sadjadi, A. Poater, J. Colloid Interface Sci. 531, 421 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. S. Sadjadi, G. Lazzara, M. Malmir, M.M. Heravi, J. Catal. 366, 245 (2018)

    Article  CAS  Google Scholar 

  44. Z. Wang, H.A. Colorado, Z.-H. Guo, H. Kim, Mater. Res. 15, 510 (2012)

    Article  CAS  Google Scholar 

  45. S. Samadi, K. Jadidi, B. Khanmohammadi, N. Tavakoli, J. Catal. 340, 344 (2016)

    Article  CAS  Google Scholar 

  46. M. Massaro, C.G. Colletti, G. Buscemi, S. Cataldo, S. Guernelli, G. Lazzara, L.F. Liotta, F. Parisi, A. Pettignano, S. Riela, New J. Chem. 42, 13938 (2018)

    Article  CAS  Google Scholar 

  47. H. Zhu, M.L. Du, M.L. Zou, C.S. Xu, Y.Q. Fu, Dalton Trans. 41, 10465 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. S. Sadjad, M. Malmir, M.M. Heravi, F. Ghoreyshi Kahangi, Int. J. Biol. Macromol. 118, 1903–1911 (2018)

    Article  CAS  Google Scholar 

  49. S. Sadjad, M.M. Heravi, M. Malmir, F. Ghoreyshi Kahangi, Appl. Clay Sci. 162, 192 (2018)

    Article  CAS  Google Scholar 

  50. A.L. Beckwith, A.A. Zavitsas, J. Am. Chem. Soc. 108, 8230 (1986)

    Article  CAS  Google Scholar 

  51. J. Kochi, Tetrahedron 18, 483 (1962)

    Article  CAS  Google Scholar 

  52. J. Kochi, R. Subramanian, J. Am. Chem. Soc. 87, 4855 (1965)

    Article  CAS  Google Scholar 

  53. J.K. Kochi, J. Am. Chem. Soc. 84, 774 (1962)

    Article  CAS  Google Scholar 

  54. J.K. Kochi, P.J. Krusic, J. Am. Chem. Soc. 90, 7157 (1968)

    Article  CAS  Google Scholar 

  55. J.A. Mayoral, S. Rodríguez-Rodríguez, L. Salvatella, Chem. Eur. J. 14, 9274 (2008)

    Article  CAS  PubMed  Google Scholar 

  56. C. Walling, W. Thaler, J. Am. Chem. Soc. 83, 3877 (1961)

    Article  CAS  Google Scholar 

  57. C. Walling, A.A. Zavitsas, J. Am. Chem. Soc. 85, 2084 (1963)

    Article  CAS  Google Scholar 

  58. S.H. Bertz, S. Cope, M. Murphy, C.A. Ogle, B.J. Taylor, J. Am. Chem. Soc. 129, 7208 (2007)

    Article  CAS  PubMed  Google Scholar 

  59. A. Casitas, X. Ribas, Chem. Sci. 4, 2301 (2013)

    Article  CAS  Google Scholar 

  60. M. Lamblin, L. Nassar-Hardy, J.-C. Hierso, E. Fouquet, F.-X. Felpin, Adv. Synth. Catal. 352, 33 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Sadjadi is grateful to the Iran Polymer and Petrochemical Institute for partial financial support. The support of Prof. Heravi is greatly appreciated. S. Samadi thanks the University of Kurdistan Research Councils and Iranian National Science Foundation (proposal no. 95838133) for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samahe Sadjadi or Saadi Samadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadjadi, S., Samadi, S. & Samadi, M. Cu(CH3CN)4PF6 immobilized on halloysite as efficient heterogeneous catalyst for oxidation of allylic C–H bonds in olefins under mild reaction condition. Res Chem Intermed 45, 2441–2455 (2019). https://doi.org/10.1007/s11164-019-03745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03745-z

Keywords

Navigation