Skip to main content
Log in

Role of nitrogen functional groups and manganese oxides on the reduction of NO over modified semi-coke catalyst at low temperature

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Modified semi-coke catalysts loaded melamine (M) and/or manganese oxides (MnOx) were prepared by the impregnation method for the reduction of NO at low temperature. A fixed-bed reactor, XRD, Raman and XPS were used for the catalytic activity measurement and characterization of modified semi-coke catalysts. The highest denitration rate of 5M–10Mn–ASC was 91.6% at 225 °C and kept the highest level within 200–300 °C. The results of characterization revealed the changes of nitrogen functional groups on the surface of modified semi-coke catalysts. Pyrrolic-like nitrogen (N-5) appeared on the surface of semi-coke catalysts only with M. After loading M and MnOx simultaneously, quaternary nitrogen (N–Q) appeared and the contribution of nitro type complexes (–NO2) declined sharply. During the whole reaction process, melamine as a nitrogen species source can adjust both the contribution of acidic and basic functional groups. The acidic functional groups, like C=O and N–Q, could provide active sites to adsorb NH3 and the basic functional groups, like pyridinic-like nitrogen (N-6) and N-5, could adsorb some O2 and NO. Meanwhile, the sufficient oxygen vacancies and surface chemical oxygen provided by MnOx reinforced denitration efficiency of modified semi-coke catalysts as well. Different modified conditions would result in the changing roles of nitrogen functional groups constantly, which could be beneficial to improve the denitration rate. Based on the results of catalytic activity measurements and analysis of different characterization, the possible denitrification mechanism of modified semi-coke catalysts was built.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Chen, Study on Low-Temperature Selective Catalytic Reduction of NO x in Flue Gas by CeO 2 –Fe 2 O 3 /ACF Catalyst (Hunan University, Hunan, 2009)

    Google Scholar 

  2. Z. Liang, X. Ma, H. Lin, Y. Tang, Appl. Energy 88, 1120 (2011)

    Article  CAS  Google Scholar 

  3. L.S. Wang, B.C. Huang, Y.X. Su, G.Y. Zhou, K.L. Wang, H.C. Luo, D.Q. Ye, Chem. Eng. J. 192, 232 (2012)

    Article  CAS  Google Scholar 

  4. J. Muñiz, G. Marbán, A.B. Fuertes, Appl. Catal. B Environ. 27(27–36), 27 (2000)

    Article  Google Scholar 

  5. X. Fan, F. Qiu, H. Yang, W. Tian, T. Hou, X. Zhang, Catal. Commun. 12, 1298 (2011)

    Article  CAS  Google Scholar 

  6. I. Nova, L. Lietti, L. Casagrande, L. Dall’Acqua, E. Giamello, P. Forzatti, Appl. Catal. B Environ. 17, 245 (1998)

    Article  CAS  Google Scholar 

  7. I. Giakoumelou, C. Fountzoula, C. Kordulis, S. Boghosian, J. Catal. 239, 1 (2006)

    Article  CAS  Google Scholar 

  8. M.A. Zamudio, N. Russo, D. Fino, Ind. Eng. Chem. Res. 50, 6668 (2011)

    Article  CAS  Google Scholar 

  9. F.T. You, G.W. Yu, Y. Wang, Z.J. Xing, X.J. Liu, J. Li, Fuel Process. Technol. 413, 387 (2017)

    CAS  Google Scholar 

  10. J.P. Sousa, M.F. Pereira, J.L. Figueiredo, Fuel Process. Technol. 106, 727 (2013)

    Article  CAS  Google Scholar 

  11. M. Yoshikawa, A. Yasutake, I. Mochida, Appl. Catal. A Gen. 173, 239 (1998)

    Article  CAS  Google Scholar 

  12. X. Tang, J. Hao, H. Yi, J. Li, Catal. Today 126, 406 (2007)

    Article  CAS  Google Scholar 

  13. B.K. Pradhan, N.K. Sandle, Carbon 37, 1323 (1999)

    Article  CAS  Google Scholar 

  14. T. Valdés-Solís, G. Marbán, A.B. Fuertes, Appl. Catal. B Environ. 46, 261 (2003)

    Article  CAS  Google Scholar 

  15. J.P. Wang, Z. Yan, L.L. Liu, Y. Chen, Z.T. Zhang, X.D. Wang, Appl. Surf. Sci. 313, 660 (2014)

    Article  CAS  Google Scholar 

  16. J.P. Wang, Z. Yan, L.L. Liu, Y.Y. Zhang, Z.T. Zhang, X.D. Wang, Appl. Surf. Sci. 309, 1 (2014)

    Article  CAS  Google Scholar 

  17. M. Wang, H. Liu, Z.H. Huang, F. Kang, Chem. Eng. J. 256, 101 (2014)

    Article  CAS  Google Scholar 

  18. Y.P. Wan, W.R. Zhao, Y. Tang, L. Li, Appl. Catal. B Environ. 148, 114 (2014)

    Article  CAS  Google Scholar 

  19. P.R. Ettireddy, N. Ettireddy, T. Boningari, J. Catal. 292, 53 (2014)

    Article  CAS  Google Scholar 

  20. M. Stanciulescu, G. Caravaggio, A. Dobri, Appl. Catal. B Environ. 123, 229 (2012)

    Article  CAS  Google Scholar 

  21. Z.Y. Sheng, Y.F. Hu, J.M. Xue, Environ. Technol. 33, 2421 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. K. Min, E.D. Park, M.K. Ji, Appl. Catal. A Gen. 327, 261 (2007)

    Article  CAS  Google Scholar 

  23. J.L. Figueiredo, M.F.R. Pereira, Catal. Today 150, 2 (2010)

    Article  CAS  Google Scholar 

  24. R.S. Rathore, D.K. Srivastava, A.K. Agarval, N. Verma, J. Hazard. Mater. 173, 211 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. S. Bashkova, T.J. Bandosz, J. Colloid Interface Sci. 333, 97 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. R.J.J. Jansen, H.V. Bekkum, Carbon 32, 1507 (1994)

    Article  CAS  Google Scholar 

  27. J. Bimer, P.D. Sałbut, S. Berłozecki, J.P. Boudou, E. Broniek, T. Siemieniewska, Fuel 77, 519 (1998)

    Article  CAS  Google Scholar 

  28. P. Burg, P. Fydrych, D. Cagniant, G. Nanse, J. Bimer, A. Jankowska, Carbon 40, 1521 (2002)

    Article  CAS  Google Scholar 

  29. A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T. Bandosz, Carbon 42, 469 (2004)

    Article  CAS  Google Scholar 

  30. H.P. Boehm, Catalytic properties of nitrogen-containing carbons, in Carbon Materials for Catalysis, ed. by P. Serp, J.L. Figuetredo (Wiley, Hoboken, 2009), p. 219

    Google Scholar 

  31. Q.Y. Li, Y.Q. Hou, X.J. Han, Z.G. Huang, Q.Q. Guo, D.K. Sun, J.D. Liu, J. Fuel Chem. Technol. 42, 487 (2014)

    Article  CAS  Google Scholar 

  32. J.Z. Jiao, S.H. Li, B.C. Huang, Acta Phys. Chem. 7, 1383 (2015)

    Google Scholar 

  33. X.M. Zhang, Y.Q. Deng, P. Tian, Appl. Catal. B Environ. 191, 179 (2016)

    Article  CAS  Google Scholar 

  34. Y.P. Shi, Studies on the Microstructure and Properties of Carbon Fibers by Raman Spectroscopy (Donghua University, Shanghai, 2010)

    Google Scholar 

  35. M. Bowden, D.J. Gardiner, J.M. Southall, D.L. Gerrard, Carbon 31, 1057 (1993)

    Article  CAS  Google Scholar 

  36. I.M. Robinson, M. Zakikhani, R.J. Day, R.J. Young, C. Galiotis, J. Mater. Sci. Lett. 6, 1212 (1987)

    Article  CAS  Google Scholar 

  37. M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J. Benoit, J. Schreiber, O. Chauvet, Chem. Commun. 16, 1450 (2001)

    Article  CAS  Google Scholar 

  38. J.Y. Lee, S.H. Hong, S.P. Cho, Curr. Appl. Phys. 6, 996 (2006)

    Article  Google Scholar 

  39. X. Lu, C. Song, C.C. Chang, Ind. Eng. Chem. Res. 53, 11601 (2014)

    Article  CAS  Google Scholar 

  40. L.Y. Wang, X.X. Cheng, Z.Q. Wang, C.Y. Ma, Y.K. Qin, Appl. Catal. B Environ. 201, 636 (2017)

    Article  CAS  Google Scholar 

  41. T. Boningari, P.R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C.A. McDonald, P.G. Smirniotis, J. Catal. 325, 145 (2015)

    Article  CAS  Google Scholar 

  42. M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon, Chem. Mater. 15, 395 (2003)

    Article  CAS  Google Scholar 

  43. F.D. Liu, H. Hong, J. Phys. Chem. C 114, 16929 (2010)

    Article  CAS  Google Scholar 

  44. S.J. Li, X.X. Wang, S. Tan, Y. Shi, W. Li, Fuel 191, 511 (2017)

    Article  CAS  Google Scholar 

  45. F. Kapteijna, J.A. Moulijna, S. Matznerb, H.P. Boehmb, Carbon 37, 1143 (1999)

    Article  Google Scholar 

  46. H.F. Gorgulho, F. Goncalves, M.F.R. Pereira, J.L. Figueiredo, Carbon 47, 2032 (2009)

    Article  CAS  Google Scholar 

  47. P. Nowicki, R. Pietrzak, H. Wachowska, Energy Fuels 24, 1197 (2010)

    Article  CAS  Google Scholar 

  48. R. Pietrzak, Fuel 88, 1871 (2009)

    Article  CAS  Google Scholar 

  49. J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, Appl. Catal. B Environ. 125, 398 (2012)

    Article  CAS  Google Scholar 

  50. P. Vinke, M. Eijk, M. Verbree, A.F. Voskamp, H. Bekkum, Carbon 32, 675 (1994)

    Article  CAS  Google Scholar 

  51. W. Shen, Z. Li, Y. Liu, Recent Pat. Chem. Eng. 1, 27 (2008)

    Article  CAS  Google Scholar 

  52. S. Matzner, H.P. Boehm, Carbon 36, 1697 (1998)

    Article  CAS  Google Scholar 

  53. J.P.S. Sousa, M.F.R. Pereira, J.L. Figueiredo, Catal. Today 176, 383 (2011)

    Article  CAS  Google Scholar 

  54. B. Thirupathi, P.G. Smirniotis, J. Catal. 288, 74 (2012)

    Article  CAS  Google Scholar 

  55. Z.H. Chen, Q. Yang, H. Li, X.H. Li, L.F. Wang, S.C. Tsang, J. Catal. 276, 56 (2010)

    Article  CAS  Google Scholar 

  56. S. Ponce, M.A. Pena, J.L.G. Fierro, Appl. Catal. B Environ. 24, 193 (2000)

    Article  CAS  Google Scholar 

  57. Y.L. Fu, Y.F. Zhang, G.Q. Li, J. Zhang, Y.J. Guo, J. Energy Inst. 90, 813 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the National Natural Science Foundation of China (No. 51604048), Fund of Chongqing Science and Technology (No. csct2016shmszx20015) and China Postdoctoral Science Foundation (2017T100683) and Chongqing Postdoctoral Science Foundation (xmT2017002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingcai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Ren, S., Liu, Q. et al. Role of nitrogen functional groups and manganese oxides on the reduction of NO over modified semi-coke catalyst at low temperature. Res Chem Intermed 45, 563–579 (2019). https://doi.org/10.1007/s11164-018-3619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3619-2

Keywords

Navigation