Skip to main content
Log in

Effect of total suspended solids and various treatment on rheological characteristics of municipal sludge

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Rheological characteristics play an important role in the design and optimization of sludge treatment processes that are dependent on the total suspended solids (TSS). The present study systematically investigated the impact of various treatment processes on sludge rheology. The effect of TSS on rheological properties was comprehensively explored. Rheological tests were performed at (20 ± 0.1) °C, physicochemical parameters of the sludge were measured for compositional analysis. The composition of sludge is altered when subjected to both heat treatment and AD. All sludges exhibit shear-thinning behavior, the results of a t test (with significance level of 0.05) indicated that the Herschel–Bulkley model provides a valid description of sludge flow behaviors. The anaerobically digested sludge (ADS) is the least viscous while thermal hydrolyzed sludge (THS) shows slightly higher viscosity than that of fresh mixed sludge (FMS) at high shear rates. The yield stress and thixotropy decrease gradually as the treatment proceeds. Both infinite viscosity and yield stress of THS increases dramatically when the TSS exceeds 7.30%, hence 7.30% may serve as a critical level for THS to preliminarily determine whether it is economically viable to implement a thermal pretreatment. The TSS threshold for ADS is determined to be 7.12% given the sharp increase in infinite viscosity and yield stress, which are undesirable for dewatering. The thixotropy increases with increasing TSS, and TSS only has a slight influence on the thixotropic properties of THS relative to FMS, which demonstrates the advantage of thermal pretreatment for the purpose of achieving high solid sludge AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.S. Chen, N. Li, B. Dong, W.T. Zhao, L.L. Dai, X.H. Dai, J. Hazard. Mater. 342, 1 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. H.W. Kim, S.K. Han, H.S. Shin, Waste Manag. Res. 21(6), 515 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. L. Appels, J. Baeyens, J. Degrève, R. Dewil, Prog. Energy Combust. Sci. 34(6), 755 (2008)

    Article  CAS  Google Scholar 

  4. N. Duan, B. Dong, B. Wu, X.H. Dai, Bioresour. Technol. 104, 150 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. L. Nazari, Z.S. Yuan, D. Santoro, S. Sarathy, D. Ho, D. Batstone, C.B. Xu, M.B. Ray, Water Res. 113, 111 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. S. Pilli, S. Yan, R.D. Tyagi, R.Y. Surampalli, Crit. Rev. Environ. Sci. Technol. 45(6), 669 (2015)

    Article  CAS  Google Scholar 

  7. H.B. Nielsen, A. Thygesen, A.B. Thomsen, J.E. Schmidt, J. Chem. Technol. Biotechnol. 86(2), 238 (2011)

    Article  CAS  Google Scholar 

  8. Y.G. Xue, H.J. Liu, S.S. Chen, N. Dichtl, X.H. Dai, N. Li, Chem. Eng. J. 264, 174 (2015)

    Article  CAS  Google Scholar 

  9. B.R. Dhar, G. Nakhla, M.B. Ray, Waste Manag. 32(3), 542 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. J.L. Urrea, S. Collado, A. Laca, M. Diaz, J. Water Process Eng. 5, 153 (2015)

    Article  Google Scholar 

  11. J.S. Zhang, Y.G. Xue, N. Eshtiaghi, X.H. Dai, W.Q. Tao, Z. Li, Water Res. 116, 34 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. J. Laurent, M. Casellas, H. Carrère, C. Dagot, Chem. Eng. J. 166(3), 841 (2011)

    Article  CAS  Google Scholar 

  13. S. Baroutian, M. Robinson, A.M. Smit, S. Wijeyekoon, D. Gapes, Bioresour. Technol. 146, 294 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. N. Abe, Y.Q. Tang, M. Iwamura, S. Morimura, K. Kida, Water Sci. Technol. 67(11), 2527 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. J.C. Baudez, F. Markis, N. Eshtiaghi, P. Slatter, Water Res. 45(17), 5675 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. G.H. Feng, L.Y. Liu, W. Tan, Ind. Eng. Chem. Res. 53(27), 11185 (2014)

    Article  CAS  Google Scholar 

  17. G.H. Feng, Y.B. Guo, W. Tan, Water Sci. Technol. 72(11), 2018 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. N. Ratkovich, W. Horn, F.P. Helmus, S. Rosenberger, W. Naessens, I. Nopens, T.R. Bentzen, Water Res. 47(2), 463 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. N. Eshtiaghi, F. Markis, S.D. Yap, J.C. Baudez, P. Slatter, Water Res. 47(15), 5493 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. E. Farno, J.C. Baudez, R. Parthasarathy, N. Eshtiaghi, Chem. Eng. J. 273, 534 (2015)

    Article  CAS  Google Scholar 

  21. R. Hreiz, N. Adouani, D. Fünfschilling, P. Marchal, M.N. Pons, Chem. Eng. Res. Des. 119, 47 (2017)

    Article  CAS  Google Scholar 

  22. E. Farno, J.C. Baudez, R. Parthasarathy, N. Eshtiaghi, Water Res. 56, 156 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. E. Farno, J.C. Baudez, R. Parthasarathy, N. Eshtiaghi, Chem. Eng. J. 295, 39 (2016)

    Article  CAS  Google Scholar 

  24. H.F. Wang, Y.J. Ma, H.J. Wang, H. Hu, H.Y. Yang, R.J. Zeng, Water Res. 122, 398 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. E. Hong, A.M. Yeneneh, A. Kayaalp, T.K. Sen, H.M. Ang, M. Kayaalp, Res. Chem. Intermed. 42(8), 6567 (2016)

    Article  CAS  Google Scholar 

  26. S. Al-Dawery, J. Environ. Chem. Eng. 4(4), 4731 (2016)

    Article  CAS  Google Scholar 

  27. A. Pevere, G. Guibaud, E. Goin, E. van Hullebusch, P. Lens, Biochem. Eng. J. 43(3), 231 (2009)

    Article  CAS  Google Scholar 

  28. D. Khodaei, S.M.A. Razavi, M.H.H. Khodaparast, Food Res. Int. 66, 58 (2014)

    Article  Google Scholar 

  29. M.V. Chandra, B.A. Shamasundar, Food Hydrocoll. 48, 47 (2015)

    Article  CAS  Google Scholar 

  30. M. Ruiz-Hernando, J. Labanda, J. Llorens, Chem. Eng. J. 262, 242 (2015)

    Article  CAS  Google Scholar 

  31. A. American Public Health, A. American Water Works, F. Water Pollution Control, F. Water Environment, standard methods for the examination of water and wastewater, American Public Health Association (2012)

  32. L. Appels, J. Degre’ve, B. Van der Bruggen, J.V. Impe, R. Dewil, Bioresour. Technol. 101(15), 5743 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. K. Hii, R. Parthasarathy, S. Baroutian, D.J. Gapes, N. Eshtiaghi, Water Res. 114, 254 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. J.C. Baudez, P. Slatter, N. Eshtiaghi, Chem. Eng. J. 215–216, 182 (2013)

    Article  CAS  Google Scholar 

  35. S. Baroutian, N. Eshtiaghi, D.J. Gapes, Bioresour. Technol. 140, 227 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. J.C. Baudez, R.K. Gupta, N. Eshtiaghi, P. Slatter, Water Res. 47(1), 173 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. J.B. Liu, D.W. Yu, J. Zhang, M. Yang, Y.W. Wang, Y.T. Wei, J. Tong, Water Res. 98, 98 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. M. Climent, I. Ferrer, M. del Mar Baeza, A. Artola, F. Va´zquez, X. Font, Chem. Eng. J. 133(1–3), 335 (2007)

    Article  CAS  Google Scholar 

  39. Y.J. Zhou, M. Takaoka, W. Wang, X. Liu, K. Oshita, J. Biosci. Bioeng. 116(1), 101 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. B. Tang, X.F. Feng, S.S. Huang, L.Y. Bin, F.L. Fu, K.H. Yang, J. Clean. Prod. 148, 537 (2017)

    Article  CAS  Google Scholar 

  41. M. Ruiz-Hernando, G. Martinez-Elorza, J. Labanda, J. Llorens, Chem. Eng. J. 230, 102 (2013)

    Article  CAS  Google Scholar 

  42. I. Seyssiecq, B. Marrot, D. Djerroud, N. Roche, Chem. Eng. J. 142(1), 40 (2008)

    Article  CAS  Google Scholar 

  43. N. Tixier, G. Guibaud, M. Baudu, Bioresour. Technol. 90(2), 215 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. F. Markis, J.C. Baudez, R. Parthasarathy, P. Slatter, N. Eshtiaghi, Chem. Eng. J. 253, 526 (2014)

    Article  CAS  Google Scholar 

  45. S. Razmkhah, S.M.A. Razavi, M.A. Mohammadifar, Food Hydrocoll. 63, 404 (2017)

    Article  CAS  Google Scholar 

  46. J. Labanda, J. Llorens, Powder Technol. 155(3), 181 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Beijing Municipal Education Commission and Beijing Natural Science Foundation (grant number KZ201310016017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Jiang, K., Wang, X. et al. Effect of total suspended solids and various treatment on rheological characteristics of municipal sludge. Res Chem Intermed 44, 5123–5138 (2018). https://doi.org/10.1007/s11164-018-3413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3413-1

Keywords

Navigation