Skip to main content
Log in

Surface morphology and active sites of TiO2 for photoassisted catalysis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The main aim of this work is to discriminate the closely related adsorption and catalytic degradation processes that occur during a photocatalytic reaction. Very high-surface-area TiO2 and Pd-doped TiO2 were synthesized by microwave-assisted hydrothermal synthesis and used for degradation of methylene blue as a model pollutant dye. Thorough structural, morphological, and surface analyses of the synthesized catalysts were conducted to investigate key material properties that influence adsorption and catalytic performance. The adsorption capacity of the catalysts was determined by fitting adsorption data using the Langmuir isotherm model, and the photocatalytic activity of the synthesized samples was evaluated by periodically measuring the concentration of methylene blue as it was photocatalytically degraded under ultraviolet (UV) light. The results indicated that noble-metal incorporation compromised adsorption but favored catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.S. Auerbach, D.W. Bristol, J.C. Peckham, G.S. Travlos, C.D. Hébert, R.S. Chhabra, Food Chem. Toxicol. 48, 169 (2010)

    Article  CAS  Google Scholar 

  2. M. Rao, R. Scelza, R. Scotti, L. Gianfreda, J. Soil Sci. Plant Nutr. 10, 333 (2010)

    Article  Google Scholar 

  3. N. Kannan, M.M. Sundaram, Dyes Pigm. 51, 25 (2001)

    Article  CAS  Google Scholar 

  4. V. Gomez, M. Larrechi, M. Callao, Chemosphere 69, 1151 (2007)

    Article  CAS  Google Scholar 

  5. L. Wang, J. Zhang, A. Wang, Desalination 266, 33 (2011)

    Article  CAS  Google Scholar 

  6. N. Zaghbani, A. Hafiane, M. Dhahbi, Sep. Purif. Technol. 55, 117 (2007)

    Article  CAS  Google Scholar 

  7. S. Zhang, H. Gao, J. Li, Y. Huang, A. Alsaedi, T. Hayat, X. Xu, X. Wang, J. Hazard. Mater. 321, 92 (2017)

    Article  CAS  Google Scholar 

  8. S. Zhang, H. Gao, X. Liu, Y. Huang, X. Xu, N.S. Alharbi, T. Hayat, J. Li, ACS Appl. Mater. Interfaces 8, 35138 (2016)

    Article  CAS  Google Scholar 

  9. K. Nagaveni, M. Hegde, G. Madras, J. Phys. Chem. B 108, 20204 (2004)

    Article  CAS  Google Scholar 

  10. S. Roy, A. Marimuthu, M. Hegde, G. Madras, Appl. Catal. B 73, 300 (2007)

    Article  CAS  Google Scholar 

  11. S. Challagulla, S. Roy, J. Mater. Res. 32, 2764 (2017)

    Article  CAS  Google Scholar 

  12. R. Nagarjuna, S. Roy, R. Ganesan, Microporous Mesoporous Mater. 211, 1 (2015)

    Article  CAS  Google Scholar 

  13. S. Challagulla, R. Nagarjuna, R. Ganesan, S. Roy, J. Porous Mater. 22, 1105 (2015)

    Article  CAS  Google Scholar 

  14. M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Chem. Mater. 14, 1974 (2002)

    Article  CAS  Google Scholar 

  15. A.V. Murugan, V. Samuel, V. Ravi, Mater. Lett. 60, 479 (2006)

    Article  CAS  Google Scholar 

  16. A.A.A. El-Rady, M.S.A. El-Sadek, M.M.E.-S. Breky, F.H. Assaf, Adv. Nanopart. 2, 372 (2013)

    Article  Google Scholar 

  17. C. Quinones, J. Ayala, W. Vallejo, Appl. Surf. Sci. 257, 367 (2010)

    Article  CAS  Google Scholar 

  18. P. Sangpour, F. Hashemi, A.Z. Moshfegh, J. Phys. Chem. C 114, 13955 (2010)

    Article  CAS  Google Scholar 

  19. S. Sakthivel, M. Shankar, M. Palanichamy, B. Arabindoo, D. Bahnemann, V. Murugesan, Water Res. 38, 3001 (2004)

    Article  CAS  Google Scholar 

  20. T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett. 32, 330 (2003)

    Article  CAS  Google Scholar 

  21. N.C. Khang, N. Van Minh, I.-S. Yang, J. Nanosci. Nanotechnol. 11, 6494 (2011)

    Article  Google Scholar 

  22. A.A. Ismail, D.W. Bahnemann, L. Robben, V. Yarovyi, M. Wark, Chem. Mater. 22, 108 (2009)

    Article  Google Scholar 

  23. K. Nagaveni, G. Sivalingam, M. Hegde, G. Madras, Appl. Catal. B 48, 83 (2004)

    Article  CAS  Google Scholar 

  24. Z. Li, Z. Sun, Z. Duan, R. Li, Y. Yang, J. Wang, X. Lv, W. Qi, H. Wang, Sci. Rep. 7, 42932 (2017)

    Article  CAS  Google Scholar 

  25. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    Article  CAS  Google Scholar 

  26. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, Q. Xu, J. Mater. Chem. 22, 4050 (2012)

    Article  CAS  Google Scholar 

  27. C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, J. Phys. Chem. B 110, 4066 (2006)

    Article  CAS  Google Scholar 

  28. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 359, 25 (2009)

    Article  CAS  Google Scholar 

  29. S. Naraginti, F.B. Stephen, A. Radhakrishnan, A. Sivakumar, Spectrochim. Acta Part A 135, 814 (2015)

    Article  CAS  Google Scholar 

  30. P. Wang, X. Wang, S. Yu, Y. Zou, J. Wang, Z. Chen, N.S. Alharbi, A. Alsaedi, T. Hayat, Y. Chen, Chem. Eng. J. 306, 280 (2016)

    Article  CAS  Google Scholar 

  31. S. Yu, X. Wang, W. Yao, J. Wang, Y. Ji, Y. Ai, A. Alsaedi, T. Hayat, X. Wang, Environ. Sci. Technol. 51, 3278 (2017)

    Article  CAS  Google Scholar 

  32. S. Zhang, H. Yang, H. Huang, H. Gao, X. Wang, R. Cao, J. Li, X. Xu, X. Wang, J. Mater. Chem. A 5, 15913 (2017)

    Article  CAS  Google Scholar 

  33. S. Zhang, Q. Fan, H. Gao, Y. Huang, X. Liu, J. Li, X. Xu, X. Wang, J. Mater. Chem. A 4, 1414 (2016)

    Article  CAS  Google Scholar 

  34. D. Zhao, G. Sheng, C. Chen, X. Wang, Appl. Catal. B Environ. 111, 303 (2012)

    Article  Google Scholar 

  35. I. El Saliby, L. Erdei, J.-H. Kim, H.K. Shon, Water Res. 47, 4115 (2013)

    Article  Google Scholar 

  36. Y. Du, P. Zheng, Korean J. Chem. Eng. 31, 2051 (2014)

    Article  CAS  Google Scholar 

  37. L.H. Ahrens, Geochim. Cosmochim. Acta 2, 155 (1952)

    Article  CAS  Google Scholar 

  38. W. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, C. Li, J. Phys. Chem. C 112, 7710 (2008)

    Article  CAS  Google Scholar 

  39. S. Challagulla, R. Nagarjuna, R. Ganesan, S. Roy, ACS Sustain. Chem. Eng. 4, 974 (2016)

    Article  CAS  Google Scholar 

  40. S. Zhang, H. Yang, H. Gao, R. Cao, J. Huang, X. Xu, ACS Appl. Mater. Interfaces 9, 23635 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.R. thanks the Department of Science and Technology (SERB/F/825/2014-15) and CSIR [01(2867/17/EMR-II)] for financial aid. The authors also thank the Department of Science and Technology—fund for improvement of science and technology infrastructure (DST FIST; SR/FST/CSI-240/2012) for procurement of FT-IR and UV–Vis spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sounak Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soman, B., Challagulla, S., Payra, S. et al. Surface morphology and active sites of TiO2 for photoassisted catalysis. Res Chem Intermed 44, 2261–2273 (2018). https://doi.org/10.1007/s11164-017-3227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3227-6

Keywords

Navigation