Skip to main content
Log in

Sulfonamides and carbamates of 3-fluoro-4-morpholinoaniline (linezolid intermediate): synthesis, antimicrobial activity and molecular docking study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The precursor compound 3-fluoro-4-morpholinoaniline (7) is an important intermediate of the antibiotic drug linezolid and was synthesized initially by the substitution of morpholine (5) on 1,2-difluoro-4-nitrobenzene (4) under neat conditions, resulting in 4-(2-fluoro-4-nitrophenyl)morpholine (6) followed by its nitro group reduction with Fe/NH4Cl. A series of new sulfonamides (9a–e) and carbamates (11a–e) have been synthesized in good yields (75–89%) by the reaction of substituted aryl sulfonyl chlorides (8a–e) and substituted aryl/acyclic chloroformates (10a–e) with precursor compound 7, respectively, for biological interest. Structures of the title products were elucidated by spectroscopic data such as IR, NMR (1H and 13C NMR) and mass and elemental analyses. The antimicrobial potency of title products was examined by the screening of growth of zone of inhibition against four bacteria and four fungi, and minimum inhibitory concentration (MIC) was also determined. Most of the compounds showed good to potent antimicrobial activity, whereas the title products, 9d and 9e against bacterial strains, and 9a, 9b, 9d and 11a against fungi, exhibited promising activity in the MIC range of 6.25–25.0 µg/mL. The whole biological activity results revealed that the sulfonamide derivatives behaved as potent antifungal agents as compared to the carbamate derivatives. Molecular docking studies of the crystal structure of topoisomerase II gyrase A complexed with natural inhibitor, clorobiocin (1kzn), using the molecular operating environment (MOE) programme were performed in order to predict the affinity and orientation of the synthesized compounds at the active enzyme site. The test compounds showed good binding affinities and formed hydrogen bonds with a surrounding of amino acids at the active sight, whereas compounds 9d (−189.0 kcal/mol) and 11a (−280.3 kcal/mol) exhibited high binding affinities and good agreement with in vitro antimicrobial screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. K. Nagai, T.A. Davies, M.R. Jacobs, P.C. Appelbaum, Antimicrob. Agents Chemother. 46(5), 1273–1280 (2000)

    Article  Google Scholar 

  2. R. Leclerq, P. Courvalin, Agents Chemother. 46(9), 2727–2734 (2002)

    Article  Google Scholar 

  3. W.M. Kirby, Science 99(2579), 452–453 (1944)

    Article  CAS  Google Scholar 

  4. K.R. Eriksen, Ugeskr. Laeger 123, 384–386 (1961)

    CAS  Google Scholar 

  5. T. Furuya, A.S. Kamlet, T. Ritter, Nature 473, 470–477 (2011)

    Article  CAS  Google Scholar 

  6. K. Müller, C. Faeh, F. Diederch, Science 317(5846), 1881–1886 (2007)

    Article  Google Scholar 

  7. A. Abbas, K. Mohsen, H. Ramin, S. Narjes, N.N. Babak, Med. Chem. Res. 21(11), 3532–3540 (2012)

    Article  Google Scholar 

  8. P. Panneerselvam, M. Gnanarupa, N. Priya, K. Ramesh, G. Saravanan, Indian J. Pharm. Sci. 71(4), 428–432 (2009)

    Article  CAS  Google Scholar 

  9. I. Alberto, R. Juan, R. Marcela, E. Carlos, Q. Jairo, A. Rodrigo, N. Manuel, C. Justo, V.R. María, A.Z. Susana, I. Braulio, Molecules 18(5), 5482–5497 (2013)

    Article  Google Scholar 

  10. M. Sunny, I.K. Shabana, S.R. Diwan, Chem. Biol. Drug Des. 81(5), 625–630 (2013)

    Article  Google Scholar 

  11. K. Sabine, Z. Alfonso, K. Marcel, B. Reto, S. Leonardo, P. Remo, J. Med. Chem. 50(23), 5833–5839 (2007)

    Article  Google Scholar 

  12. T.M. Nilesh, K.A. Ankar, V. Milan, L. Kartik, J. Chem. Pharm. Res. 8(2), 662–667 (2016)

    Google Scholar 

  13. S. Tsiodras, H.S. Gold, G. Sakoulas, G.M. Eliopoulos, C. Wennersten, L. Venkataraman, R.C. Moellering, M.J. Ferraro, Lancet 358(9277), 207–208 (2001)

    Article  CAS  Google Scholar 

  14. J. Seedat, G. Zick, I. Klare, C. Konstabel, N. Weiler, H. Sahly, Antimicrob. Agents Chemother. 50(12), 4217–4219 (2006)

    Article  CAS  Google Scholar 

  15. F. Reck, F. Zhou, M. Girardot, G. Kern, C.J. Eyermann, N.J. Hales, R.R. Ramsay, M.B. Gravestock, J. Med. Chem. 48(2), 499–506 (2005)

    Article  CAS  Google Scholar 

  16. G. Poce, G. Zappia, G.C. Porretta, B. Botta, M. Biava, Expert Opin. Ther. Pat. 18(2), 97–121 (2008)

    Article  CAS  Google Scholar 

  17. O.A. Phillips, E.E. Udo, A.A.M. Ali, S.M. Samuel, Eur. J. Med. Chem. 42(2), 214–225 (2007)

    Article  CAS  Google Scholar 

  18. O.A. Phillips, E.E. Udo, M.E. Abdel-Hamid, R. Varghese, Eur. J. Med. Chem. 44(8), 3217–3227 (2009)

    Article  CAS  Google Scholar 

  19. S.Y. Kim, H.B. Park, J.H. Cho, K.H. Yoo, C.H. Oh, Bioorg. Med. Chem. 19(9), 2558–2561 (2009)

    Article  CAS  Google Scholar 

  20. A.R. Renslo, G.W. Luehr, M.F. Gordeev, Bioorg. Med. Chem. 14(12), 4227–4240 (2006)

    Article  CAS  Google Scholar 

  21. T. Komine, A. Kojima, Y. Asahina, T. Saito, H. Takano, T. Shibue, Y. Fukuda, J. Med. Chem. 51(20), 6558–6562 (2008)

    Article  CAS  Google Scholar 

  22. Q. Xin, H. Fan, B. Guo, H. He, S. Gao, H. Wang, Y. Huang, Y. Yang, J. Med. Chem. 54(21), 7493–7502 (2011)

    Article  CAS  Google Scholar 

  23. A. Kamal, P. Swapna, V.C.R.N.C.S. Rajesh, S.A. Basha, M.P.N. Rao, S. Gupta, Eur. J. med. Chem 62, 661–669 (2013)

    Article  CAS  Google Scholar 

  24. K. Xu, P. Wang, X. Xu, F. Chu, J. Lin, Y. Zhang, H. Lei, Res. Chem. Intermed. 41(3), 1385–1411 (2015)

    Article  CAS  Google Scholar 

  25. P. Vedavathi, H. Sudhamani, C.N. NRaju, Res. Chem. Intermed. 43(5), 3251–3263 (2017)

    Article  CAS  Google Scholar 

  26. H. Sudhamani, S.K.T. Basha, S. Adam, S. Madhusudhana, A.U. Rani, C.N. Raju, Res. Chem. Intermed. 43(1), 103–120 (2017)

    Article  CAS  Google Scholar 

  27. K. Berger, B. Petersen, B.H. Pfaue, Arch. Lebensmittelhyg. 37(359), 85–108 (1986)

    Google Scholar 

  28. C.W. Thornber, Chem. Soc. Rev. 8, 563–580 (1979)

    Article  CAS  Google Scholar 

  29. R.C. Ogden, C.W. Flexner, Protease inhibitors in AIDS therapy (Marcel Dekker; Inc, New York, 2001), pp. 101–118

    Google Scholar 

  30. I. Nishimori, D. Vullo, A. Innocenti, A. Scozzafava, A. Mastrolorenz, C.T. Supuran, Bioorg. Med. Chem. Lett. 15(17), 3828–3833 (2005)

    Article  CAS  Google Scholar 

  31. J.J. Li, D. Anderson, E.G. Burton, J.N. Cogburn, J.T. Collins, D.J. Garland, S.A. Gregory, H.C. Huang, P.C. Isakson, C.M. Koboldt, E.W. Logusch, M.B. Norton, W.E. Perkins, E.J. Reinhard, K. Seibert, A.W. Veenhuizem, Y. Zang, D.B. Reitz, J. Med. Chem. 38(22), 4570–4578 (1995)

    Article  CAS  Google Scholar 

  32. D.S. Rao, G. Madhava, C.N. Raju, M. Balaji, S. Madhusudhana, A.U. Rani, Med. Chem. Res. 25(4), 751–768 (2016)

    Article  Google Scholar 

  33. A.E. Boyd, Diabetes 37(7), 847–850 (1988)

    Article  CAS  Google Scholar 

  34. K.V. Narayana, D.S. Rao, G. Madhava, N. Venkateswarlu, T. Vijaya, C.N. Raju, Org. Commun. 9(2), 42–53 (2016)

    Google Scholar 

  35. T.S. Claudiu, C. Angela, S. Andrea, Med. Res. Rev. 23(5), 535–538 (2003)

    Article  Google Scholar 

  36. A.K. Ghosh, M. Brindisi, J. Med. Chem. 58, 2895–2940 (2015)

    Article  CAS  Google Scholar 

  37. P. Tundo, C.R. McElroy, F. Arico, Synlett 10, 1567–1571 (2010)

    Article  Google Scholar 

  38. L.R. Morgan, R.F. Struck, W.R. Waud, Cancer Chemother. Pharmacol. 64(4), 829–835 (2009)

    Article  CAS  Google Scholar 

  39. J. Deng, W. Zhao, W. Yang, React. Funct. Polym. 67, 828–835 (2006)

    Article  Google Scholar 

  40. J.C. Jung, M.A. Avery, Tetrahedron Lett. 47(45), 7969–7972 (2006)

    Article  CAS  Google Scholar 

  41. S. Gattinoni, C.D. Simone, S. Dallavalle, Bioorg. Med. Chem. Lett. 20(15), 4406–4411 (2010)

    Article  CAS  Google Scholar 

  42. J.A.O. Meara, A. Jakalina, S. La Plante, P.R. Bonneau, R. Coulombe, A.M. Faucher, I. Guse, S. Landry, J. Racine, B. Simoneau, B. Thavonekham, Bioorg. Med. Chem. Lett. 17(12), 3362–3366 (2007)

    Article  Google Scholar 

  43. T. Narasaiah, D.S. Rao, S. Rasheed, G. Madhava, D. Srinivasulu, P.B. Naidu, C.N. Raju, Der Pharmacia Lettre 4(3), 854–862 (2012)

    CAS  Google Scholar 

  44. S.V.L. Reddy, S.K.T. Basha, K. Naresh, C.N. Raju, Der Chem. Sin. 4(2), 127–132 (2013)

    Google Scholar 

  45. H. Sudhamani, S.K.T. Basha, S.M.C. Reddy, B. Sreedhar, S. Adam, C.N. Raju, Chem. Intermed. 42(10), 7471–7486 (2016)

    Article  CAS  Google Scholar 

  46. R. Menzel, M. Gellert, Adv. Pharmacol. 29A, 201–205 (1994)

    Google Scholar 

  47. A. Maxwell, M. Gellert, Adv. Protein Chem. 38, 69–107 (1986)

    Article  CAS  Google Scholar 

  48. L. Brino, A. Urzhumtsev, M. Mousli, C. Bronner, A. Mitschler, P. Oudet, D. Moras, J. Biol. Chem. 275(13), 9468–9475 (2000)

    Article  CAS  Google Scholar 

  49. S.K.T. Basha, D.S. Rao, G. Madhava, S.K.T. Basha, M.N. Devamma, S. Madhusudhana, A.U. Rani, C.N. Raju, Phosphorus Sulfur Silicon Relat Elem. 190, 1064–1074 (2015)

    Article  Google Scholar 

  50. B. Song, H. Zhang, H. Wang, S. Yang, L. Jin, D. Hu, L. Pang, W. Xue, J. Agric. Food Chem. 53(20), 7886–7891 (2005)

    Article  CAS  Google Scholar 

  51. R. Cruickshank, J.P. Duguid, B.P. Marion, R.H.A. Swain, Medicinal Microbiology, vol. 2, 12th edn. (Churchill Livingstone, London, 1975), pp. 196–202

    Google Scholar 

  52. National Committee for Clinical Standards; 2000. NCCLS. Method for dilution antimicrobial susceptibility test for bacteria that grow aerobically, Approved Standards, 5th edn. (Villanova, PA)

  53. S.Q. Song, L.G. Zhou, D. Li, D. Tang, J.Q. Li, W.B. Jiang, Antifungal activity of five plants from Xinjiang. Nat. Prod. Res. Dev. 16, 157–159 (2004)

    Google Scholar 

  54. National Committee for Clinical Laboratory Standard. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast, Approved Standard. Document M27-A; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1997

  55. National Committee for Clinical Laboratory Standard. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium Forming Filamentous Fungi: Proposed Standard. Document M38-P; National Committee for Clinical Laboratory Standard: Wayne, PA, USA, 1998

  56. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard, 5th ed.; NCCLS: Villanova, PA, 2000; M7–A5

  57. C. Lino, A. Pietro, B. Marco, D.A. Giuseppe, R. Gabriele, EP Patent 2072505 A2 (2009)

  58. K.V. Balakin, Y.A. Ivanenkov, A.V. Skorenko, Y.V. Nikolsky, N.P. Savchuk, A.A. Ivashchenko, J. Biomol. Screen. 9(1), 22–31 (2004)

    Article  CAS  Google Scholar 

  59. D. Lafitte, V. Lamour, P.O. Tsvetkov, A.A. Makarov, M. Klich, P. Deprez, D. Moras, C. Briand, R. Gilli, Biochemistry 41(23), 7217–7223 (2002)

    Article  CAS  Google Scholar 

  60. A. Hall, D. Parsonage, L.B. Poole, P.A. Karplus, J. Mol. Biol. 402(1), 194–209 (2010)

    Article  CAS  Google Scholar 

  61. J.P. Declercq, C. Evrard, A. Clippe, D.V. Stricht, A. Bernard, B. Knoops, J. Mol. Biol. 311(4), 751–759 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Bioinformatics and Department of Botany, S. V. University, Tirupati, for their support in the screening of the docking study and biological activity, respectively. The authors also express thanks to Hyderabad Central University and Osmania University for providing instrumentation facilities for recording spectroscopic data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devineni Subba Rao, Ponne Venkata Chalapathi or Chamarthi Naga Raju.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janakiramudu, D.B., Subba Rao, D., Srikanth, C. et al. Sulfonamides and carbamates of 3-fluoro-4-morpholinoaniline (linezolid intermediate): synthesis, antimicrobial activity and molecular docking study. Res Chem Intermed 44, 469–489 (2018). https://doi.org/10.1007/s11164-017-3114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3114-1

Keywords

Navigation