Skip to main content

Advertisement

Log in

Novel ferrocene-based ionic liquid supported on silica nanoparticles as efficient catalyst for synthesis of naphthopyran derivatives

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We report synthesis of silica nanospheres containing ferrocene-tagged imidazolium acetate (SiO2@Im-Fc[OAc]) as efficient heterogeneous nanocatalyst for synthesis of naphthopyran derivatives under solvent-free conditions, based on modification of nano SiO2 by ionic liquid with ferrocene tags and subsequent anion metathesis reaction. The synthesized novel nanocatalyst (SiO2@Im-Fc[OAc]) was systematically characterized using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and field-emission scanning electron microscopy. The catalytic activity of (SiO2@Im-Fc[OAc]) was tested in one-pot three-component reaction of aromatic aldehydes, malononitrile, and 2-naphthol for facile synthesis of naphthopyran derivatives. To achieve high catalytic efficacy, the effects of various reaction parameters such as temperature, amount of catalyst, type of solvent, etc. were investigated. Furthermore, recovery and reuse of the nanocatalyst several times was demonstrated without appreciable loss in catalytic activity. The presented protocol offers several advantages, including green and ecofriendly nature, operational simplicity, higher yield, and easy recovery and reuse of the nanostructured catalyst. The workup of these very clean reactions involves only recrystallization of the product from ethanol and recovery of the catalyst by filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Gu, Green Chem. 14, 2091–2128 (2012)

    Article  CAS  Google Scholar 

  2. K. Tanaka, F. Toda, Chem. Rev. 100, 1025–1074 (2000)

    Article  CAS  Google Scholar 

  3. I. Ugi, Pure Appl. Chem. 73, 187–191 (2001)

    Article  CAS  Google Scholar 

  4. R.A. Sheldon, Green Chem. 7, 267–278 (2005)

    Article  CAS  Google Scholar 

  5. P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301–312 (2010)

    Article  CAS  Google Scholar 

  6. T. Welton, Green Chem. 13, 225 (2011)

    Article  CAS  Google Scholar 

  7. D. Chaturvedi, Curr. Org. Chem. 15, 1236–1248 (2011)

    Article  CAS  Google Scholar 

  8. C. Yue, D. Fang, L. Liu, T.F. Yi, J. Mol. Liq. 163, 99–121 (2011)

    Article  CAS  Google Scholar 

  9. R. Giernoth, Angew. Chem. Int. Ed. 49, 2834–2839 (2010)

    Article  CAS  Google Scholar 

  10. H. Yufeng, X. Peng, Effect of the Structures of Ionic Liquids on Their Physical Chemical Properties (Springer, Berlin, 2014), pp. 141–174

    Google Scholar 

  11. C.P. Mehnert, R.A. Cook, N.C. Dispenziere, M. Afeworki, J. Am. Chem. Soc. 124, 12932–12933 (2002)

    Article  CAS  Google Scholar 

  12. M.B. Gawande, Y. Monga, R. Zboril, R. Sharma, Coord. Chem. Rev. 288, 118–143 (2015)

    Article  CAS  Google Scholar 

  13. R. Skoda-Földes, Molecules 19, 8840–8884 (2014)

    Article  Google Scholar 

  14. B. Xin, C. Jia, X. Li, Curr. Org. Chem. 20, 616–628 (2016)

    Article  CAS  Google Scholar 

  15. E.J. Jung, B.H. Park, Y.R. Lee, Green Chem. 12, 2003–2011 (2010)

    Article  CAS  Google Scholar 

  16. S.M. Wickel, C.A. Citron, J.S. Dickschat, Eur. J. Org. Chem. 2013, 2906–2913 (2013)

    Article  CAS  Google Scholar 

  17. S. Banerjee, A. Horn, H. Khatri, G. Sereda, Tetrahedron Lett. 52, 1878–1881 (2011)

    Article  CAS  Google Scholar 

  18. D. Kumar, V.B. Reddy, S. Sharad, U. Dube, S. Kapur, Eur. J. Med. Chem. 44, 3805–3809 (2009)

    Article  CAS  Google Scholar 

  19. J.L. Wang, D. Liu, Z.J. Zhang, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri, Z. Huang, Proc. Natl. Acad. Sci. 97, 7124–7129 (2000)

    Article  CAS  Google Scholar 

  20. A.D. Patil, A.J. Freyer, D.S. Eggleston, R.C. Haltiwanger, M.F. Bean, P.B. Taylor, M.J. Cranfa, A.L. Breen, H.R. Bartus, R.K. Johnson, R.P. Hertzberg, J.W. Westley, J. Med. Chem. 36, 4131–4138 (1993)

    Article  CAS  Google Scholar 

  21. C.S. Konkoy, D.B. Fick, S.X. Cai, N.C. Lan, J.F.W. Keana, Int. Appl. WO 0075123 2000; Chem. Abstr. 134, 29313a (2001)

  22. S.M.O. Costa, T.L.G. Lemos, O.D.L. Pessoa, C. Pessoa, R. Montenegro, R. Braz-Filho, J. Nat. Prod. 64, 792–795 (2001)

    Article  CAS  Google Scholar 

  23. D.L. Wood, D. Panda, T.R. Wiernicki, L. Wilson, M.A. Jordan, J.P. Singh, Mol. Pharmacol. 52, 437–444 (1997)

    CAS  Google Scholar 

  24. A.A. Hussein, I. Barberena, T.L. Capson, T.A. Kursar, P.D. Coley, P.N. Solis, M.P.J. Gupta, Nat. Prod. 67, 451–453 (2004)

    Article  CAS  Google Scholar 

  25. J.J. Hollick, B.T. Golding, I.R. Hardcastle, N. Martin, C. Richardson, L.J.M. Rigoreau, G.C.M. Smith, R.J. Griffin, Bioorg. Med. Chem. Lett. 13, 3083–3086 (2003)

    Article  CAS  Google Scholar 

  26. S. Kumar, D. Hernandez, B. Hoa, Y. Lee, J.S. Yang, A. McCurdy, Org. Lett. 10, 3761–3764 (2008)

    Article  CAS  Google Scholar 

  27. A.H.F.A. El-Wahab, H.M. Mohamed, A.M. El-Agrody, A.H. Bedair, Eur. J. Chem. 4, 467–483 (2013)

    Article  Google Scholar 

  28. S. Shinde, G. Rashinkar, R. Salunkhe, J. Mol. Liq. 178, 122 (2013)

    Article  CAS  Google Scholar 

  29. M. Ghashang, Res. Chem. Intermed. 42, 4191 (2016)

    Article  CAS  Google Scholar 

  30. A.R. Moosavi-Zare, M.A. Zolfigol, O. Khaledian, V. Khakyzadeh, M.H. Beyzavi, H.G. Kruger, Chem. Eng. J. 248, 122–127 (2014)

    Article  CAS  Google Scholar 

  31. M. Tajbakhsh, M. Kariminasab, H. Alinezhad, R. Hosseinzadeh, P. Rezaee, M. Tajbakhsh, H.J. Gazvini, M.A. Amiri, J. Iran. Chem. Soc. 12, 1405–1414 (2015)

    Article  CAS  Google Scholar 

  32. S.J. Kalita, N. Saikia, D.C. Deka, H. Mecadon, Res. Chem. Intermed. 42, 6863–6871 (2016)

    Article  CAS  Google Scholar 

  33. D. Kumar, V.B. Reddy, B.G. Mishra, R.K. Rana, M.N. Nadagouda, R.S. Varma, Tetrahedron 63, 3093–3097 (2007)

    Article  CAS  Google Scholar 

  34. R. Teimuri-Mofrad, F. Mirzaei, H. Abbasi, K.D. Safa, C. R. Chim. (2016). doi: 10.1016/j.crci.2016.06.011

  35. R. Teimuri-Mofrad, K.D. Safa, K. Rahimpour, R. Ghadari, J. Organomet. Chem. 811, 14–19 (2016)

    Article  CAS  Google Scholar 

  36. A. Shahrisa, R. Teimuri-Mofrad, M. Gholamhosseini-Nazari, Synlett 26, 1031–1038 (2015)

    Article  CAS  Google Scholar 

  37. A. Shahrisa, R. Teimuri-Mofrad, M. Gholamhosseini-Nazari, Mol. Divers. 19, 87–101 (2014)

    Article  Google Scholar 

  38. R. Teimuri-Mofrad, A. Shahrisa, M. Gholamhosseini-Nazari, N. Arsalani, Res. Chem. Intermed. 42, 3425–3439 (2016)

    Article  CAS  Google Scholar 

  39. Y. He, X. Yu, Mater. Lett. 61, 2071–2074 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank research affairs of the University of Tabriz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Teimuri-Mofrad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teimuri-Mofrad, R., Gholamhosseini-Nazari, M., Payami, E. et al. Novel ferrocene-based ionic liquid supported on silica nanoparticles as efficient catalyst for synthesis of naphthopyran derivatives. Res Chem Intermed 43, 7105–7118 (2017). https://doi.org/10.1007/s11164-017-3061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3061-x

Keywords

Navigation