Skip to main content
Log in

Magnetic materials and water treatments for a sustainable future

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

After a brief historical classification of the main discoveries related to magnetism, magnetic materials have been rationally ordered in a simple (and hopefully clear) organization. A great effort was realized in the description of the different synthetic approaches for the preparation of magnet-sensitive materials (in particular, focusing on iron oxides). The principal useful techniques for evaluating the magnetic properties in materials (namely, MFM and magnetization hysteresis) have been presented, providing useful examples in order to understand both the potentiality and limits of these characterization methods. Finally, the application of magnet-sensitive materials in water remediation processes has been provided, highlighting both advantages and disadvantages of their use compared to conventional treatments. In this context, the action mechanism and the possible integration of this class of materials into processes involving wastewater treatments are widely discussed, keeping an eye toward the future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. TED Conferences LLC. Richard Feynman: Physics is for to imagine. https://www.ted.com/talks/richard_feynman. Accessed 1 Dec 2016

  2. A.-H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  CAS  Google Scholar 

  3. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  CAS  Google Scholar 

  4. Y.-W. Jun, J.-H. Lee, J. Cheon, Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47, 5122–5135 (2008)

    Article  CAS  Google Scholar 

  5. K.E. Peyer, L. Zhang, B.J. Nelson, Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5, 1259–1272 (2013)

    Article  CAS  Google Scholar 

  6. T. Hyeon, Chemical synthesis of magnetic nanoparticles. Chem. Commun. 9, 927–934 (2003)

    Article  CAS  Google Scholar 

  7. D. Mehta, S. Mazumdar, S.K. Singh, Magnetic adsorbents for the treatment of water/wastewater—a review. J. Water Process Eng. 7, 244–265 (2015)

    Article  Google Scholar 

  8. F. Franzoso, R. Nisticò, F. Cesano, I. Corazzari, F. Turci, D. Scarano, A. Bianco Prevot, G. Magnacca, L. Carlos, D.O. Mártire, Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chem. Eng. J. 310, 307–316 (2017)

    Article  CAS  Google Scholar 

  9. R. Nisticò, F. Franzoso, F. Cesano, D. Scarano, G. Magnacca, L. Carlos, M.E. Parolo, Chitosan-derived iron oxide systems for magnetically-guided and efficient water purification processes from polycyclic aromatic hydrocarbons. ACS Sustain. Chem. Eng. 5, 793–801 (2017)

    Article  CAS  Google Scholar 

  10. A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnermann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Ed. 43, 4303–4306 (2004)

    Article  CAS  Google Scholar 

  11. T. Shinjo, Nanomagnetism and Spintronics (Elsevier, Amsterdam, 2009)

    Google Scholar 

  12. H.-W. Lee, K.-C. Kim, J. Lee, Review of Maglev train technologies. IEEE Trans. Magn. 42, 1917–1925 (2006)

    Article  Google Scholar 

  13. B.W. Atkinson, F. Bux, H.C. Kasan, Considerations for applications of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24, 129–135 (1998)

    CAS  Google Scholar 

  14. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water SA 72, 3–27 (2015)

    CAS  Google Scholar 

  15. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)

    Article  CAS  Google Scholar 

  16. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 8, 553–597 (2004)

    Google Scholar 

  17. Brilliant.org. Magnetic field lines. https://brilliant.org/wiki/magnetic-field-lines. Accessed 2 Dec 2016

  18. R. Wiltschko, W. Wiltschko, Chapter 8—Magnetoreception, in Sensing in nature, ed. by C. López-Larrea (Springer, New York, 2012), pp. 126–141

    Chapter  Google Scholar 

  19. R.A. Serway, J.W. Jewett Jr., Principles of Physics—a calculus-based text, 3rd edn. (Thomson, Stamford, 2002)

    Google Scholar 

  20. R.M. Bozorth, Magnetism. Rev. Mod. Phys. 19, 29–86 (1947)

    Article  Google Scholar 

  21. M. Fowler, Historical Beginnings of Theories of Electricity and Magnetism (University of Virginia, Dept. Physics, 1997). http://galileoandeinstein.physics.virginia.edu/more_stuff/E&M_Hist.html

  22. H.C. Oersted, Experiments on the effect of a current of electricity on the magnetic needles. Annal. Philos. 16, 273–277 (1820)

    Google Scholar 

  23. R. Singh, Unexpected magnetism in nanomaterials. J. Magn. Magn. Mater. 346, 58–73 (2013)

    Article  CAS  Google Scholar 

  24. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford (UK), 1873)

    Google Scholar 

  25. J.J. Thomson, Cathode rays. Phil. Mag. 44, 293 (1897)

    Article  Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  27. I.S. Moosa, History and development of permanent magnets. Int. J. Res. Dev. Technol. 2, 18–26 (2014)

    Google Scholar 

  28. R.E. Rosensweig, Ferrofluids: Introduction, in Encyclopedia of Materials: Science and Technology, 2nd edn., ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Elsevier, Amsterdam, 2001), pp. 3093–3102

    Chapter  Google Scholar 

  29. S. Genc, B. Derin, Synthesis and rheology of ferrofluids: a review. Curr. Opin. Chem. Eng. 3, 118–124 (2014)

    Article  Google Scholar 

  30. R. Sessoli, Chilling with magnetic molecules. Angew. Chem. Int. Ed. 51, 43–45 (2012)

    Article  CAS  Google Scholar 

  31. D. Gatteschi, R. Sessoli, Molecular nanomagnets: the first 10 years. J. Magn. Magn. Mater. 272–276, 1030–1036 (2004)

    Article  CAS  Google Scholar 

  32. S.A. Chavan, J.V. Yakhmi, I.K. Gopalakrishnan, Molecular ferromagnets—a review. Mater. Sci. Eng., C 3, 175–179 (1995)

    Article  Google Scholar 

  33. L. Solymar, D. Walsh, Electrical Properties of Materials, 8th edn. (Oxford University Press, Oxford, 2010)

    Google Scholar 

  34. J. Liu, Z. Wu, Q. Tian, W. Wu, X. Xiao, Shape-controlled iron oxide nanocrystals: synthesis, magnetic properties and energy conversion applications. CrystEngComm 18, 6303–6326 (2016)

    Article  CAS  Google Scholar 

  35. M.D. Simons, A.K. Geim, Diamagnetic levitation: flying frogs and floating magnets. J. Appl. Phys. 87, 6200–6204 (2000)

    Article  Google Scholar 

  36. S. Chikazumi, C.D. Graham Jr., Physics of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 2009)

    Google Scholar 

  37. R.M. Cornell, U. Schwertmann, The Iron Oxides, Structure, Properties, Reactions, Occurrences and Uses, 2nd edn. (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  38. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D. 36, R167–R181 (2003)

    Article  CAS  Google Scholar 

  39. M.S. Valera, S.L. Tomlinson, G.P. Heydon, A.N. Farley, S.R. Hoon, L. Zhou, S. McVitie, J.N. Chapman, Magnetic force microscopy of soft magnetic materials. J. Magn. Magn. Mater. 157(158), 555–556 (1996)

    Article  Google Scholar 

  40. A. Schwarz, R. Wiesendanger, Magnetic sensitive force microscopy. NanoToday 3, 28–39 (2008)

    Article  CAS  Google Scholar 

  41. H.D.A. Mohamed, S.M.D. Watson, B.R. Horrocks, A. Houlton, Magnetic and conductive magnetite nanowires by DNA-templating. Nanoscale 4, 5936–5945 (2012)

    Article  CAS  Google Scholar 

  42. L. Abelmann, Magnetic Force Microscopy, In: J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Eds.), Encyclopedia of Spectroscopy and Spectrometry, (3rd Ed.), Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, Amsterdam, 2017), pp. 675–684

  43. F. Cesano, G. Fenoglio, L. Carlos, R. Nisticò, One-step synthesis of magnetic chitosan polymer composite films. Appl. Surf. Sci. 345, 175–181 (2015)

    Article  CAS  Google Scholar 

  44. O. Öztürk, M. Fidan, S. Mändl, MFM imaging of expanded austenite formed on 304 SS and CoCrMo alloys. Surf. Coat. Technol. 256, 15–22 (2014)

    Article  CAS  Google Scholar 

  45. J. Jalli, Y.-K. Hong, G.S. Abo, S. Bae, J.-J. Lee, J.-H. Park, B.C. Choi, S.-G. Kim, MFM studies of magnetic domain patterns in bulk barium ferrite (BaFe12O19) single crystals. J. Magn. Magn. Mater. 323, 2627–2631 (2011)

    Article  CAS  Google Scholar 

  46. G. Bertotti, V. Basso, C. Beatrice, M. LoBue, A. Magni, P. Tiberto, Hysteresis in magnetic materials: the role of structural disorder, thermal relaxation, and dynamic effects. J. Magn. Magn. Mater. 226–230, 1206–1212 (2001)

    Article  Google Scholar 

  47. H.W.F. Sung, C. Rudowicz, Physics behind the magnetic hysteresis loop—a survey of misconceptions in magnetism literature. J. Magn. Magn. Mater. 260, 250–260 (2003)

    Article  CAS  Google Scholar 

  48. IEEE Magnetics Society. Magnetic Units. http://www.ieeemagnetics.org/index.php?option=com_content&view=article&id=118&Itemid=107. Accessed 15 Dec 2016

  49. B.D, Plouffe, S.K. Murthy, L.H. Lewis. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep. Progress Phys. 78, 016601 (2015)

  50. J.M.D. Coey, Magnetism in future. J. Magn. Magn. Mater. 226–230, 2107–2112 (2001)

    Article  Google Scholar 

  51. R.D. James, Materials science: magnetic alloys break the rules. Nature 521, 298–299 (2015)

    Article  CAS  Google Scholar 

  52. T. Wen, Y. Li, D. Zhang, Q. Zhan, Q. Wen, Y. Liao, Y. Xie, H. Zhang, C. Liu, L. Jin, Y. Liu, T. Zhou, Z. Zhong, Manipulate the magnetic anisotropy of nanoparticles assemblies in arrays. J. Colloid Interface Sci. 497, 14–22 (2017)

    Article  CAS  Google Scholar 

  53. C.F. Hirjibehedin, C.-Y. Lin, A.F. Otte, M. Ternes, C.P. Lutz, B.A. Jones, A.J. Heinrich, Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007)

    Article  CAS  Google Scholar 

  54. W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957)

    Article  CAS  Google Scholar 

  55. S. Wang, K. Huang, C. Hou, L. Yuan, X. Wu, D. Lu, Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE = La, Pr, Nd, Sm). Dalton Trans. 44, 17201–17208 (2015)

    Article  CAS  Google Scholar 

  56. E.V. Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, Effect of Fe-doping on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 synthesized by a chemical route. J. Mater. Chem. C 4, 1066–1079 (2016)

  57. W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)

    Article  CAS  Google Scholar 

  58. W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2015)

    Article  CAS  Google Scholar 

  59. G. Magnacca, A. Allera, E. Montoneri, L. Celi, D.E. Benito, L.G. Gagliardi, M.C. Gonzalez, D.O. Mártire, L. Carlos, Novel magnetite nanoparticles coated with waste-sourced biobased substances as sustainable and renewable adsorbing materials. ACS Sustain. Chem. Eng. 2, 1518–1524 (2014)

    Article  CAS  Google Scholar 

  60. R. Dronskowski, The little maghemite story: a classical functional material. Adv. Func. Mater. 11, 27–29 (2001)

    Article  CAS  Google Scholar 

  61. L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C. Minero, D. Vione, Photo-Fenton reaction in the presence of morphologically controlled hematite as iron source. J. Photochem. Photobiol. A: Chem. 307, 99–107 (2015)

    Article  CAS  Google Scholar 

  62. W. Jiang, K.-L. Lai, H. Hu, X.-B. Zeng, F. Lang, K.-X. Liu, Y. Wu, Z.-W. Gu, The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J. Nanopart. Res. 13, 5135–5145 (2011)

    Article  CAS  Google Scholar 

  63. S. Wu, A.Z. Sun, F.Q. Zhai, J. Wang, W.H. Xu, Q. Zhang, A.A. Volinsky, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 65, 1882–1884 (2011)

    Article  CAS  Google Scholar 

  64. F. Yazdani, M. Seddigh, Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater. Chem. Phys. 184, 318–323 (2016)

    Article  CAS  Google Scholar 

  65. R. Nisticò, G. Magnacca, M. Antonietti, N. Fechler, “Salted silica”: sol-gel chemistry of silica under hypersaline conditions. Z Anorgan Allgem Chem 640, 582–587 (2014)

    Article  CAS  Google Scholar 

  66. R. Nisticò, G. Magnacca, N. Fechler, The hypersaline synthesis of titania: from powders to aerogels. RSC Adv. 5, 14333–14340 (2015). Correction on: 5, 18578 (2015)

    Article  CAS  Google Scholar 

  67. R. Nisticò, G. Magnacca, M. Antonietti, N. Fechler, Highly porous silica glasses and aerogels made easy: the hypersaline route. Adv. Porous Mater. 2, 37–41 (2014)

    Article  Google Scholar 

  68. R. Nisticò, S. Tabasso, G. Magnacca, T. Jordan, M. Shalom, N. Fechler, Reactive hypersaline route: one-pot synthesis of porous photoactive nanocomposites. Langmuir 33, 5213–5222 (2017)

    Article  CAS  Google Scholar 

  69. R. Bhandari, P. Gupta, T. Dziubla, J.Z. Hilt, Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Mater. Sci. Eng., C 67, 59–64 (2016)

    Article  CAS  Google Scholar 

  70. H. Pardoe, W. Chua-anusorn, T.G. St. Pierre, J. Dobson, Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J. Magn. Magn. Mater. 225, 41–46 (2001)

    Article  CAS  Google Scholar 

  71. L. Shen, Y. Qiao, Y. Guo, S. Meng, G. Yang, M. Wu, J. Zhao, Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram. Int. 40, 1519–1524 (2014)

    Article  CAS  Google Scholar 

  72. A. Bianco Prevot, F. Baino, D. Fabbri, F. Franzoso, G. Magnacca, R. Nisticò, A. Arques, Urban biowaste-derived sensitizing materials for caffeine photodegradation. Environ. Sci. Pollut. Res. 24, 12599–12607 (2017)

    Article  CAS  Google Scholar 

  73. K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B. 177, 421–427 (2012)

    Article  CAS  Google Scholar 

  74. D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, In-situ precipitation of ultra-stable nano-magnetite slurry. J. Magn. Magn. Mater. 379, 74–79 (2015)

    Article  CAS  Google Scholar 

  75. A. Shavel, L.M- Liz-Marzan, Shape control of iron oxide nanoparticles. Phys. Chem. Chem. Phys. 11, 3762–3766 (2009)

    Article  CAS  Google Scholar 

  76. Z. Jing, S. Wu, Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater. Lett. 58, 3637–3640 (2004)

    Article  CAS  Google Scholar 

  77. W. Wu, X. Xiao, S. Zhang, J. Zhou, L. Fan, F. Ren, C. Jiang, Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J. Phys. Chem. C 114, 16092–16103 (2010)

    Article  CAS  Google Scholar 

  78. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, M.J. Garcia-Celma, Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10, 102–110 (2005)

    Article  CAS  Google Scholar 

  79. R. Nisticò, D. Scalarone, G. Magnacca, Preparation and physico-chemical characterization of large-mesopore silica thin films templated by block copolymers for membrane technology. Microporous Mesoporous Mater. 190, 208–214 (2014)

    Article  CAS  Google Scholar 

  80. R. Nisticò, P. Avetta, P. Calza, D. Fabbri, G. Magnacca, D. Scalarone, Selective porous gates made from colloidal silica nanoparticles. Beilstein J. Nanotechnol. 6, 2105–2112 (2015)

    Article  CAS  Google Scholar 

  81. R. Nisticò, G. Magnacca, S.A. Jadhav, D. Scalarone, Polystyrene-block-poly(ethylene oxide) copolymers as templates for stacked, spherical large-mesopore silica coatings: dependence of silica pore size on the PS/PEO ratio. Beilstein J. Nanotechnol. 7, 1454–1460 (2016)

    Article  CAS  Google Scholar 

  82. H. Maleki, L. Duraes, A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 385, 55–74 (2014)

    Article  CAS  Google Scholar 

  83. R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L.M. Ilharco, M. Pagliaro, The sol-gel route to advanced silica-based materials and recent applications. Chem. Rev. 113, 6592–6620 (2013)

    Article  CAS  Google Scholar 

  84. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990)

    Google Scholar 

  85. R. Nisticò, D. Scalarone, G. Magnacca, Sol-gel chemistry, templating and spin-coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings. Microporous Mesoporous Mater. 248, 18–29 (2017)

    Article  CAS  Google Scholar 

  86. W.T. Dong, C. Zhu, Use of ethylene oxide in the sol-gel synthesis of α-Fe2O3 nanoparticles from Fe(III) salts. J. Mater. Chem. 12, 1676–1683 (2002)

    Article  CAS  Google Scholar 

  87. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  CAS  Google Scholar 

  88. H. Xu, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 2555–2567 (2013)

    Article  CAS  Google Scholar 

  89. P. Lidström, J. Tierney, B. Wathey, J. Westm, Microwave assisted organic synthesis-a review. Tetrahedron 57, 9225–9283 (2001)

    Article  Google Scholar 

  90. O. Pascu, E. Carenza, M. Gich, S. Estradé, F. Peiró, G. Herranz, A. Roig, Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis; comparison with the thermal decomposition route. J. Phys. Chem. C 116, 15108–15116 (2012)

    Article  CAS  Google Scholar 

  91. L. Yan, S. Zhang, P. Chen, H. Liu, H. Yin, H. Li, Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res. 167, 507–519 (2012)

    Article  CAS  Google Scholar 

  92. H. Vali, B. Weiss, Y.L. Li, S.K. Sears, S.S. Kim, J.L. Kirschvink, L. Zhang, Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc. Natl. Acad. Sci. U.S.A. 101, 16121–16126 (2004)

    Article  CAS  Google Scholar 

  93. A. Scheffel, M. Gruska, D. Faivre, A. Linaroudis, J.M. Plitzko, D. Schüler, An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006)

    Article  CAS  Google Scholar 

  94. A.A. Bharde, R.Y. Parikh, M. Baidakova, S. Jouen, B. Hannoyer, T. Enoki, B.L. Prasad, Y.S. Shouche, S. Ogale, M. Sastry, Bacteria-mediated precursor dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24, 5787–5794 (2008)

    Article  CAS  Google Scholar 

  95. L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, P. Herrasti, Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 53, 3436–3441 (2008)

    Article  CAS  Google Scholar 

  96. R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999)

    Article  CAS  Google Scholar 

  97. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    Article  CAS  Google Scholar 

  98. D.-Y. Park, S.-T. Myung, Carbon-coated magnetite embedded on carbon nanotubes for rechargeable lithium and sodium batteries. ACS Appl. Mater. Interfaces. 6, 11749–11757 (2014)

    Article  CAS  Google Scholar 

  99. L.M. Rossi, N.J.S. Costa, F.P. Silva, R. Wojcieszak, Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16, 2906–2933 (2014)

    Article  CAS  Google Scholar 

  100. J.L. Lyon, D.A. Fleming, M.B. Stone, P. Schiffer, M.E. Williams, Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004)

    Article  CAS  Google Scholar 

  101. S.K. Giri, T.K. Nath, Exchange bias effect in nanostructured magnetic oxides. J. Nanosci. Nanotechnol. 14, 1209–1230 (2014)

    Article  CAS  Google Scholar 

  102. A.G. Trovó, T.F.S. Silva, O. Gomes Jr., A.E.H. Machado, W. Borges Neto, P.S. Muller Jr., D. Daniel, Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design. Chemosphere 90, 170–175 (2013)

    Article  CAS  Google Scholar 

  103. N. Klamerth, S. Malato, M.I. Maldonado, A. Aguera, A.R. Fernández-Alba, Application of photo-Fenton as a tertiary treatment of emerging contaminants in municipal wastewater. Environ. Sci. Technol. 44, 1792–1798 (2010)

    Article  CAS  Google Scholar 

  104. N. Klamerth, L. Rizzo, S. Malato, M.I. Maldonado, A. Aguera, A.R. Fernández-Alba, Degradation of fifteen emerging contaminants at μg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res. 44, 545–554 (2010)

    Article  CAS  Google Scholar 

  105. C. Sirtori, A. Zapata, I. Oller, W. Gernjak, A. Agüera, S. Malato, Decontamination industrial pharmaceutical wastewater combining solar photo-Fenton and biological treatment. Water Res. 43, 661–668 (2009)

    Article  CAS  Google Scholar 

  106. A. Zapata, I. Oller, L. Rizzo, S. Hilgert, M.I. Maldonado, J.A. Sánches-Pérez, S. Malato, Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: interdependence of initial pollutant concentration, temperature and iron concentration. Appl. Catal. B 97, 292–298 (2010)

    Article  CAS  Google Scholar 

  107. A. Bernabeu, S. Palacios, R. Vicente, R.F. Vercher, S. Malato, A. Arques, A.M. Amat, Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chem. Eng. J. 198–199, 65–72 (2012)

    Article  CAS  Google Scholar 

  108. M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source. Appl. Catal. B 154–155, 102–109 (2014)

    Article  CAS  Google Scholar 

  109. L.M. Pastrana-Martinez, N. Pereira, R. Lima, J.L. Faria, H.T. Gomes, A.M.T. Silva, degradation of diphenhydramine by photo-fenton using magnetically recoverable iron oxide nanoparticles as catalyst. Chem. Eng. J. 261, 45–52 (2015)

    Article  CAS  Google Scholar 

  110. O.V. Kharissova, R. Dias, B.I. Kharisov, Magnetic adsorbents based on micro- and nano-structured materials. RSC Adv. 5, 6695–6719 (2014)

    Article  CAS  Google Scholar 

  111. Y. Chu, Q. Pan, Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials. ACS Appl. Mater. Interfaces. 4, 2420–2425 (2012)

    Article  CAS  Google Scholar 

  112. A.Z.M. Badruddoza, Z.B.Z. Shawon, T.W.J. Daniel, K. Hidajat, M.S. Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohyd. Polym. 91, 322–332 (2013)

    Article  CAS  Google Scholar 

  113. J.P. Rao, P. Gruenberg, K.E. Geckeler, Magnetic zero-valent metal polymer nanoparticles: current trends, scope, and perspectives. Prog. Polym. Sci. 40, 138–147 (2015)

    Article  CAS  Google Scholar 

  114. M. Respaud, J.M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T.O. Ely, C. Amiens, B. Chau-dret, Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B 57, 2925–2935 (1998)

    Article  CAS  Google Scholar 

  115. X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266 (2016)

    Article  CAS  Google Scholar 

  116. S. Liu, W. Yan, W.X. Zhang, Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem. 11, 1618–1626 (2009)

    Article  CAS  Google Scholar 

  117. F. Fu, D.D. Dionysiou, H. Liuc, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267, 194–205 (2014)

    Article  CAS  Google Scholar 

  118. P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup. Nano Today 1, 44–48 (2006)

    Article  Google Scholar 

  119. R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 211–212, 112–125 (2012)

    Article  CAS  Google Scholar 

  120. D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016)

    Article  CAS  Google Scholar 

  121. D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  CAS  Google Scholar 

  122. K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  CAS  Google Scholar 

  123. C.M.B. Henderson, J.M. Charnock, D.A. Plant, Cation occupancies in Mg Co, Ni, Zn, Al ferrite spinels: a multi-element EXAFS study. J. Phys.: Condens. Matter 19, 076214 (2007)

    CAS  Google Scholar 

  124. Y. Xiao, H. Liang, W. Chen, Z. Wang, Synthesis and adsorption behavior of chitosan-coated MnFe2O4 nanoparticles for trace heavy metal ions removal. Appl. Surface Sci. 285 B, 498–504 (2013)

    Article  CAS  Google Scholar 

  125. Y. Meng, D. Chen, Y. Sun, D. Jiao, D. Zeng, Z. Liu, Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Appl. Surf. Sci. 324, 745–750 (2015)

    Article  CAS  Google Scholar 

  126. J. Wei, X. Zhang, Q. Liu, Z. Li, L. Liu, J. Wang, Magnetic separation of uranium by CoFe2O4 hollow spheres. Chem. Eng. J. 241, 228–234 (2014)

    Article  CAS  Google Scholar 

  127. Z. Jia, Q. Qin, J. Liu, H. Shi, X. Zhang, R. Hu, S. Li, R. Zhu, The synthesis of hierarchical ZnFe2O4 architecture and their application for Cr(VI) adsorption removal from aqueous solution. Superlattices Microstruct. 82, 174–187 (2015)

    Article  CAS  Google Scholar 

  128. A. Kraus, K. Jainae, F. Unob, N. Sukpirom, Synthesis of MPTS-modified cobalt ferrite nanoparticles and their adsorption properties in relation to Au(III). J. Colloid Interface Sci. 338, 359–365 (2009)

    Article  CAS  Google Scholar 

  129. L. Yang, Y. Zhang, X. Liu, X. Jiang, Z. Zhang, T. Zhang, L. Zhang, The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem. Eng. J. 246, 88–96 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was realized with the financial support for academic interchange by the Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (Project Number: 645551). Compagnia di San Paolo and University of Torino are gratefully acknowledged for funding Project Torino_call2014_L2_126 through “Bando per il finanziamento di progetti di ricerca di Ateneo – anno 2014” (Project acronym: Microbusters).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Nisticò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisticò, R. Magnetic materials and water treatments for a sustainable future. Res Chem Intermed 43, 6911–6949 (2017). https://doi.org/10.1007/s11164-017-3029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3029-x

Keywords

Navigation