Skip to main content
Log in

Phosphorylated chitin as a chemically modified polymer for ecofriendly corrosion inhibition of copper in aqueous chloride environment

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Heterocyclic organic molecules containing oxygen, nitrogen or sulfur are generally used as inhibitors for corrosion protection of copper. These compounds form protective films by adsorption onto the metal surface. Nevertheless, most such inhibitors are biologically toxic, hence there is a need for development of ecofriendly inhibitors. Chitin is a nontoxic biological polymer that is known to be enzymatically biodegradable. In the present study chitin was chemically modified to phosphorylated chitin (PCT) to make it soluble in aqueous medium and increase its complexing ability with metal ions. The ability of this modified polymer to inhibit corrosion of copper in aqueous NaCl and the nature of the inhibition process were investigated by gravimetric analysis, electrochemical impedance spectroscopy, and polarization measurements. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) analysis were used to examine the surface morphology and analyze the chemical composition of the film formed on the metal surface. Maximum efficiency of 92 % was achieved by addition of 200 ppm PCT as inhibitor to an aqueous corrosive environment containing 200 ppm chloride at 30 ± 0.1 °C. SEM studies revealed that the smoothness of sample surface was retained on PCT addition to the aggressive medium. EDX and XPS studies on the surface film revealed the presence of PCT. A plausible mechanism for the inhibition by PCT is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W.A. Lanford, P.J. Ding, W. Wang, S. Hymes, S.P. Murarka, Mater. Chem. Phys. 41, 192 (1995)

    Article  CAS  Google Scholar 

  2. K.S. Lokesh, M. De Keersmaecker, A. Elia, D. Depla, P. Dubruel, P. Vandenabeele, S. Van Vlierberghe, A. Adriaens, Corros. Sci. 62, 73 (2012)

    Article  CAS  Google Scholar 

  3. M.M. Antonijević, S.M. Milić, M.B. Petrović, Corros. Sci. 51, 1228 (2009)

    Article  Google Scholar 

  4. M. Behpour, N. Mohammadi, Corros. Sci. 65, 331 (2012)

    Article  CAS  Google Scholar 

  5. E.M. Sherif, S.M. Park, Electrochim. Acta 51, 6556 (2006)

    Article  CAS  Google Scholar 

  6. G. Moretti, F. Guidi, Corros. Sci. 44, 1995 (2002)

    Article  CAS  Google Scholar 

  7. S.A. Umoren, U.M. Eduok, Carbohydr. Polym. 140, 314 (2016)

    Article  CAS  Google Scholar 

  8. S. Cheng, S. Chen, T. Liu, X. Chang, Y. Yin, Mater. Lett. 61, 3276 (2007)

    Article  CAS  Google Scholar 

  9. S. Cheng, S. Chen, T. Liu, X. Chang, Y. Yin, Electrochim. Acta 52, 5932 (2007)

    Article  CAS  Google Scholar 

  10. S. Banerjee, V. Srivastava, and M. M. Singh, Corros. Sci. 59, 35

  11. M. Sugimoto, M. Morimoto, H. Sashiwa, H. Saimoto, Y. Shigemasa, Carbohydr. Polym. 36, 49 (1998)

    Article  CAS  Google Scholar 

  12. C. Songkroah, W. Nakbanpote, P. Thiravetyan, Process Biochem. 39, 1553 (2004)

    Article  CAS  Google Scholar 

  13. A. Bhatnagar, M. Sillanpää, Adv. Colloid Interface Sci. 152, 26 (2009)

    Article  CAS  Google Scholar 

  14. N.M. Alves, J.F. Mano, Int. J. Biol. Macromol. 43, 401 (2008)

    Article  CAS  Google Scholar 

  15. F. Shahidi, J.K.V. Arachchi, Y.-J. Jeon, Trends Food Sci. Technol. 10, 37 (1999)

    Article  CAS  Google Scholar 

  16. F. Khoushab, M. Yamabhai, Mar. Drugs 8, 1988 (2010)

    Article  CAS  Google Scholar 

  17. J. Fangkangwanwong, M. Akashi, T. Kida, S. Chirachanchai, Biopolymers 82, 580 (2006)

    Article  CAS  Google Scholar 

  18. W. Pasanphan, S. Chirachanchai, Carbohydr. Polym. 72, 169 (2008)

    Article  CAS  Google Scholar 

  19. W. Tachaboonyakiat, N. Netswasdi, V. Srakaew, M. Opaprakasit, Polym. J. 42, 148 (2009)

    Article  Google Scholar 

  20. N. Nishi, Y. Maekita, S. Nishimura, O. Hasegawa, S. Tokura, Int. J. Biol. Macromol. 9, 109 (1987)

    Article  CAS  Google Scholar 

  21. R. Jayakumar, N. Selvamurugan, S.V. Nair, S. Tokura, H. Tamura, Int. J. Biol. Macromol. 43, 221 (2008)

    Article  CAS  Google Scholar 

  22. R. Jayakumar, N. Selvamurugan, S.V. Nair, S. Tokura, H. Tamura, Int. J. Biol. Macromol. 43, 221 (2008)

    Article  CAS  Google Scholar 

  23. ASTM NACE TM0169/G31–12a Standard guide for laboratory immersion corrosion testing of metals. (ASTM International, Philadelphia, 2012). doi:10.1520/G0031-12A

  24. R.A. Freeman, D.C. Silverman, Corrosion 48, 463 (1992)

    Article  CAS  Google Scholar 

  25. I.F. Amaral, P.L. Granja, M.A. Barbosa, J. Biomater. Sci. Polym. Ed. 16, 1575 (2005)

    Article  CAS  Google Scholar 

  26. R. Jayakumar, T. Egawa, T. Furuike, S.V. Nair, H. Tamura, Polym. Eng. Sci. 49, 844 (2009)

    Article  CAS  Google Scholar 

  27. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  28. A.V. Naumkin, A. Kraut-Vass, C. J. Powell, S. W. Gaarenstroom, NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. (National Institute of Standards and Technology, Gaithersburg, 2012). http://srdata.nist.gov/xps/

  29. N.S. McIntyre, S. Sunder, D.W. Shoesmith, F.W. Stanchell, J. Vac. Sci. Technol. 18, 714 (1981)

    Article  CAS  Google Scholar 

  30. G.P. Cicileo, B.M. Rosales, F.E. Varela, J.R. Vilche, Corros. Sci. 41, 1359 (1999)

    Article  CAS  Google Scholar 

  31. C.C. Chusuei, M.A. Brookshier, D.W. Goodman, Langmuir 15, 2806 (1999)

    Article  CAS  Google Scholar 

  32. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)

    Article  CAS  Google Scholar 

  33. T. Yoshida, S. Sawada, Bull. Chem. Soc. Jpn 47, 50 (1974)

    Article  CAS  Google Scholar 

  34. D. Chadwick, T. Hashemi, Corros. Sci. 18, 39 (1978)

    Article  CAS  Google Scholar 

  35. Y. Zhou, S. Xu, L. Guo, S. Zhang, H. Lu, Y. Gong, F. Gao, RSC Adv. 5, 14804 (2015)

    Article  CAS  Google Scholar 

  36. V.S. Sastri, J.R. Perumareddi, M. Lashgari, M. Elboujdaini, Corrosion 64, 283 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to NIT Warangal, Telangana State, India, for providing all the facilities for the present research work. V.K.K. is grateful to the Director, NIT Warangal for an institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Appa Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimal Kumar, K., Appa Rao, B.V. & Hebalkar, N.Y. Phosphorylated chitin as a chemically modified polymer for ecofriendly corrosion inhibition of copper in aqueous chloride environment. Res Chem Intermed 43, 5811–5828 (2017). https://doi.org/10.1007/s11164-017-2964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-2964-x

Keywords

Navigation