Skip to main content
Log in

Performance and kinetic study on Pd/OMS-2 catalyst for CO catalytic oxidation: effect of preparation method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Manganese oxide octahedral molecular sieves (OMS-2) synthesized from hydrothermal (H-OMS-2), reflux (R-OMS-2), co-precipitation (C-OMS-2), and solid phase (S-OMS-2) methods were impregnated with palladium and used for CO catalytic oxidation. Preparation methods presented an obvious effect on the morphology and catalytic activity of Pd/OMS-2 catalysts for CO oxidation. The hydrothermal synthesized OMS-2 (Pd/H-OMS-2) exhibited more ordered nanorod structure and higher crystallinity than Pd/R-OMS-2, Pd/C-OMS-2, and Pd/S-OMS-2. Further surface analysis indicated that different preparation methods of synthesizing OMS-2 and the impregnation process followed have a significant effect on the chemical states of Mn and O over the final Pd/OMS-2 products. The kinetics studies showed the trend of apparent activation energy (E a) over different catalysts: Pd/H-OMS-2 (18.19 kJ/mol) < Pd/R-OMS-2 (21.56 kJ/mol) < Pd/C-OMS-2 (22.57 kJ/mol) < Pd/S-OMS-2 (29.44 kJ/mol). Over 99 % of the CO conversion was obtained at 35 °C by the optimal Pd/H-OMS-2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.D. Park, D. Lee, H.C. Lee, Catal. Today 139, 280–290 (2009)

    Article  CAS  Google Scholar 

  2. Z. Ma, S. Dai, Nano. Res. 4, 3–32 (2011)

    Article  CAS  Google Scholar 

  3. X.D. Zhang, Z.P. Qu, F.L. Yu, Y. Wang, Chin. J. Catal. l34, 1277–1290 (2013)

    Article  Google Scholar 

  4. X. Xie, Y. Li, Z.Q. Liu, M. Haruta, W. Shen, Nature 458, 746–749 (2009)

    Article  CAS  Google Scholar 

  5. V. Iablokov, K. Frey, O. Geszti, N. Kruse, Catal. Lett. 134, 210–216 (2010)

    Article  CAS  Google Scholar 

  6. M.F. Luo, Y.P. Song, J.Q. Lu, X.Y. Wang, Z.Y. Wang, J. Phys. Chem. 111, 12686–12692 (2007)

    CAS  Google Scholar 

  7. T. Kobayashi, T. Yamada, K. Kayano, Appl. Catal. B Environ. 30, 287–292 (2001)

    Article  CAS  Google Scholar 

  8. G.N. Li, L. Li, Y. Yuan, J.J. Shi, Y.Y. Yuan, W.R. Zhao, L.S. Jian, Appl. Catal. B 158–159, 341–347 (2014)

    Article  Google Scholar 

  9. T. Biemelt, K. Wegner, J. Teichert, M.R. Lohe, J. Martin, J. Grothe, S. Kaskel, Appl. Catal. B 184, 208–215 (2016)

    Article  CAS  Google Scholar 

  10. X.L. Guo, J. Li, R.X. Zhou, Fuel 163, 56–64 (2016)

    Article  CAS  Google Scholar 

  11. K. Ramesh, L.W. Chen, F.X. Chen, Y. Liu, Z. Wang, Y.F. Han, Catal. Today 13, 477–482 (2008)

    Article  Google Scholar 

  12. J.S. Park, D.S. Doh, K.Y. Lee, Top. Catal. 10, 127–131 (2000)

    Article  CAS  Google Scholar 

  13. R. Xu, X. Wang, D.S. Wang, K.B. Zhou, Y.D. Li, J. Catal. 237, 426–430 (2006)

    Article  CAS  Google Scholar 

  14. S.H. Liang, F. Teng, G. Bulgan, R.L. Zong, Y.F. Zhu, J. Phys. Chem. C 112, 5307–5315 (2008)

    Article  CAS  Google Scholar 

  15. H.C. Genuino, M.S. Seraji, Y.T. Meng, D. Valencia, S.L. Suib, Appl. Catal. B 63, 361–369 (2015)

    Article  Google Scholar 

  16. N.N. Opembe, C. Guild, C. King’ondu, N.C. Nelson, I.I. Slowing, S.L. Suib, Ind. Eng. Chem. Res. 53, 19044–19051 (2014)

    Article  CAS  Google Scholar 

  17. O. Sanz, J.J. Delgado, P. Navarro, G. Arzamendi, L.M. Gandia, M. Montes, Appl. Catal. B 110, 223–237 (2011)

    Article  Google Scholar 

  18. X. Liu, P. Ning, L.S. Xu, Q.X. Liu, Z.X. Song, Q.L. Zhang, RSC Adv. 6, 41181–41188 (2016)

    Article  CAS  Google Scholar 

  19. Z.Q. Zou, M. Meng, Y.Q. Zha, J. Phys. Chem. C 114, 468–477 (2010)

    Article  CAS  Google Scholar 

  20. S. Hinokuma, H. Fujii, M. Okamoto, K. Ikeue, M. Machida, J. Mater. Chem. 22, 6183–6190 (2010)

    Article  CAS  Google Scholar 

  21. Z.J. Yang, J.J. Wei, H.X. Yang, L. Liu, H. Liang, Y.Z. Yang, Eur. J. Inorg. Chem. 21, 3354–3359 (2010)

    Article  Google Scholar 

  22. A. Taguchi, F. Schüth, Microporous Mesoporous Mater. 77, 1–45 (2005)

    Article  CAS  Google Scholar 

  23. X.S. Liu, J.Q. Lu, X.X. Wang, M.F. Luo, Chin. J. Catal. 31, 181–185 (2010)

    Google Scholar 

  24. R.N. DeGuzman, Y.F. Shen, E.J. Neth, S.L. Suib, C.L. O’Young, S. Levine, J.M. Newsam, Chem. Mater. 6, 815–821 (1994)

    Article  CAS  Google Scholar 

  25. X. Gao, H.A. Lu, C. Zhen, X.X. Jia, J. Mineral. Petrol. 3, 52–57 (2005)

    Google Scholar 

  26. Y. Ren, Z. Ma, R.E. Morris, Z. Liu, F. Jiao, S. Dai, P.G. Bruce, Nat. Commun. 4, 2015 (2013)

    Google Scholar 

  27. X.P. Cao, L.L. Cao, W.Q. Yao, X.Y. Ye, Surf. Interface Anal. 24, 662–666 (1996)

    Article  CAS  Google Scholar 

  28. P. Kast, M. Friedrich, D. Teschner, F. Girgsdies, T. Lunkenbein, R.N. Alnoncourt, M. Behrens, R. Schlogl, Appl. Catal. A 502, 8–17 (2015)

    Article  CAS  Google Scholar 

  29. D. Fang, J.L. Xie, H. Hu, H. Yang, F. He, Z.B. Fu, Chem. Eng. J. 271, 23–30 (2015)

    Article  CAS  Google Scholar 

  30. A. Bensalem, F. Bozon-Verduraz, M. Delamar, G. Bugli, Appl. Catal. A 121, 81–93 (1995)

    Article  CAS  Google Scholar 

  31. S. Hamoudi, F. Larachi, A. Adnot, A. Sayari, J. Catal. 185, 333–344 (1999)

    Article  CAS  Google Scholar 

  32. M.S. Kim, S.H. Chung, C.J. Yoo, M.S. Lee, I.H. Cho, D.W. Lee, K.Y. Lee, Appl. Catal. B 142–143, 354–361 (2013)

    Article  Google Scholar 

  33. X. Yuan, G. Sun, H. Asakura, T. Tanaka, X. Chen, Y. Yuan, G. Laurenczy, Y. Kou, P.J. Dyson, Y. Ning, Chem. Eur. J. 19, 1227–1234 (2013)

    Article  CAS  Google Scholar 

  34. S.Y. Lin, L.Y. Yang, X. Yang, R.X. Zhou, Chem. Eng. J. 247, 42–49 (2014)

    Article  CAS  Google Scholar 

  35. R.X. Zhou, B. Zhao, B.H. Yue, Appl. Surf. Sci. 254, 4701–4707 (2008)

    Article  CAS  Google Scholar 

  36. B.H. Yue, R.X. Zhou, Y.J. Wang, X.M. Zheng, Appl. Surf. Sci. 252, 5820–5828 (2006)

    Article  CAS  Google Scholar 

  37. M.C. Álvarez-Galván, B. Pawelec, V.A. de la Peña O’Shea, J.L.G. Fierro, P.L. Arias, Appl. Catal. B 51, 83–91 (2004)

    Article  Google Scholar 

  38. R.V. Gulyaev, E.M. Slavinskaya, S.A. Novopashin, D.V. Smovzh, A.V. Zaikovskii, D.Y. Osadchii, O.A. Bulavchenko, S.V. Korenev, A.I. Boronin, Appl. Catal. B 47, 132–143 (2014)

    Article  Google Scholar 

  39. J.L. Ayastuy, A. Gurbani, M.P. González-Marcos, M.A. Gutierrez-Ortiz, Ind. Eng. Chem. Res. 48, 5633–5641 (2009)

    Article  CAS  Google Scholar 

  40. Z.M. Wu, L. Zhang, Q.Q. Guan, M.L. Fu, D.Q. Ye, T. Wu, Mater. Res. Bull. 70, 567–572 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21307047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Ning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, Q., Ning, P. et al. Performance and kinetic study on Pd/OMS-2 catalyst for CO catalytic oxidation: effect of preparation method. Res Chem Intermed 43, 2017–2032 (2017). https://doi.org/10.1007/s11164-016-2743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2743-0

Keywords

Navigation