Skip to main content
Log in

Preparation, characterization and catalytic activity of biomaterial-supported copper nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Synthesis of copper nanoparticles was carried out with nanocrystalline cellulose (NCC) as a support by reducing CuSO4·5H2O ions using hydrazine. Ascorbic acid and aqueous NaOH were also used as an antioxidant and pH controller, respectively. The synthesized copper nanoparticles supported on NCC (CuNPs@NCC) were characterized by UV–vis, XRD, TEM, XRF, TGA, DSC, N2 adsorption-desorption method at 77 K and FTIR. The UV–vis confirmed the formation and stability of the CuNPs, which indicated that the maximum absorbance of CuNPs@NCC was at 590 nm due to the surface plasmon absorption of CuNPs. Morphological characterization clearly showed the formation of a spherical structure of the CuNPs with the mean diameter and standard deviation of 2.71 ± 1.12 nm. Similarly, XRD showed that the synthesized CuNPs@NCC was of high purity. The thermal analysis showed that the CuNPs@NCC exhibited better thermal behaviors than NCC. BET surface area revealed that the N2 adsorption–desorption isotherms of CuNPs@NCC featured a type IV isotherm with an H3 hysterisis loop. This chemical method is simple, cost effective, and environmentally friendly. Compared to NCC-supported CuNPs and unsupported CuNPs, the as-prepared CuNPs@NCC exhibit a superior catalytic activity and high sustainability for the reduction of methylene blue with NaBH4 in aqueous solution at room temperature. The CuNPs@NCC achieved complete reduction of MB with completion time, rate constant and correlation coefficient (R 2) of 12 min, 0.7421 min−1 and 0.9922, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.H. Faraji, P. Wipf, Bioorganic & medicinal chemistry nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17(8), 2950–2962 (2009)

    Article  CAS  Google Scholar 

  2. K. Shameli, Ahmad M. Bin, M. Zargar, W.M.Z.W. Yunus, N.A. Ibrahim, P. Shabanzadeh et al., Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 6, 271–284 (2011)

    Article  CAS  Google Scholar 

  3. U. Bogdanovi, V. Lazi, V. Vodnik, M. Budimir, Z. Markovi, S. Dimitrijevi, Copper nanoparticles with high antimicrobial activity. Mater. Lett. 128, 75–78 (2014)

    Article  Google Scholar 

  4. B. Naik, S. Hazra, V.S. Prasad, N.N. Ghosh, Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol. Catal. Commun. 12(12), 1104–1108 (2011)

    Article  CAS  Google Scholar 

  5. M. Liang, R. Su, Q. Wand, Z. He, Y. Yu, L. Wang, Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 49, 1639–1647 (2014)

    Article  CAS  Google Scholar 

  6. B. Naik, V. Sivankutty, N. Nath, Preparation of Ag nanoparticle loaded mesoporous γ -alumina catalyst and its catalytic activity for reduction of 4-nitrophenol. Powder Technol. 232, 1–6 (2012)

    Article  CAS  Google Scholar 

  7. B. Kumar, S. Hazra, B. Naik, N. Nath, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol. 269, 371–378 (2015)

    Article  Google Scholar 

  8. C.C. Huang, S.L. Lo, H.L. Lien, Synergistic effect of zero-valent copper nanoparticles on dichloromethane degradation by vitamin B12 under reducing condition. Chem. Eng. J. 219, 311–318 (2013)

    Article  CAS  Google Scholar 

  9. M.R. Bindhu, M. Umadevi, Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 37–45 (2014)

    Article  CAS  Google Scholar 

  10. K. Seah, T. Kuan, Y. Cheong, Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route. J Nanoparticles Resour. 15, 1537 (2013)

    Article  Google Scholar 

  11. Y. Yang, Z.-H. Lu, Y. Hu, Z. Zhang, W. Shi, X. Chen et al., Facile in situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane. RSC Adv. 4(27), 13749–13752 (2014)

    Article  CAS  Google Scholar 

  12. Q. Yao, Z.-H. Lu, Z. Zhang, X. Chen, Y. Lan, One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Sci. Rep. 4, 7597 (2014)

    Article  CAS  Google Scholar 

  13. P. Maity, S. Yamazoe, T. Tsukuda, Dendrimer-encapsulated copper cluster as a chemoselective and regenerable hydrogenation catalyst. ACS Catal. 3, 182–185 (2013)

    Article  CAS  Google Scholar 

  14. R. Zhou, X. Wu, X. Hao, F. Zhou, H. Li, W. Rao, Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation. Nucl. Instrum. Methods Phys. Res. B. 266, 599–603 (2008)

    Article  CAS  Google Scholar 

  15. M. Muniz-miranda, C. Gellini, E. Giorgetti, C. Ugo, V. Lastruccia, S. Fiorentino et al., Surface-enhanced raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C 115, 5021–5027 (2011)

    Article  CAS  Google Scholar 

  16. J.N. Solanki, R. Sengupta, Z.V.P. Murthy, Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci. 12(9), 1560–1566 (2010)

    Article  CAS  Google Scholar 

  17. M. Salavati-niasari, N. Mir, F. Davar, A novel precursor for synthesis of metallic copper nanocrystals by thermal decomposition approach. Appl. Surf. Sci. 256, 4003–4008 (2010)

    Article  CAS  Google Scholar 

  18. H. Kawasaki, Y. Kosaka, Y. Myoujin, T. Narushima, T. Yonezawa, R. Arakawa, Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem. Commun. (Camb.) 47, 7740–7742 (2011)

    Article  CAS  Google Scholar 

  19. T. Charinpanitkul, A. Soottitantawat, N. Tonanon, W. Tanthapanichakoon, Single-step synthesis of nanocomposite of copper and carbon nanoparticles using arc discharge in liquid nitrogen. Mater. Chem. Phys. 116, 125–128 (2009)

    Article  CAS  Google Scholar 

  20. M. Nasrollahzadeh, S.M. Sajadi, M. Khalaj, Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann. RSC Adv. R. Soc. Chem. 4, 47313–47318 (2014)

    Article  CAS  Google Scholar 

  21. J. Huang, H. Liao, H. Lei, J. Zhang, W. Dai, Synthesis of ultrafine copper particles by chemical reduction under ultrasonic field. J. Mater. Appl. 1(3), 1–7 (2014)

    Google Scholar 

  22. A. Mao, M. Ding, X. Jin, X. Gu, C. Cai, C. Xin et al., Direct, rapid synthesis of water-dispersed copper nanoparticles and their surface-enhanced Raman scattering properties. J. Mol. Struct. 1079, 396–401 (2015)

    Article  CAS  Google Scholar 

  23. C. Dong, H. Cai, X. Zhang, C. Cao, Synthesis and characterization of monodisperse copper nanoparticles using gum acacia. Phys. E Low Dimens. Syst. Nanostruct. 57, 12–20 (2014)

    Article  CAS  Google Scholar 

  24. M.S. Usman, N.A. Ibrahim, K. Shameli, N. Zainuddin, W. Zin, W. Yunus, Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17, 14928–14936 (2012)

    Article  CAS  Google Scholar 

  25. R.A. Soomro, S. Tufail, H. Sherazi, N. Memon, M. Raza, Synthesis of air stable copper nanoparticles and their use in catalysis. Adv Mater Lett. 5(4), 191–198 (2014)

    Article  Google Scholar 

  26. S. Venkatakrishnan, G. Veerappan, E.E. Veerappan, Aerobic synthesis of biocompatible copper nanoparticles: promising antibacterial agent and catalyst for nitroaromatic reduction and C–N cross coupling reaction. RSC Adv. 4, 15003–15006 (2014)

    Article  CAS  Google Scholar 

  27. S. Padalkar, J.R. Capadona, S.J. Rowan, C. Weder, L.A. Stanciu, R.J. Moon, Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir Am. Chem. Soc. 26(21), 8497–8502 (2010)

    CAS  Google Scholar 

  28. M. Rezayat, R.K. Blundell, J.E. Camp, D.A. Walsh, W. Thielemans, Green one-step synthesis of catalytically active palladium nanoparticles supported on cellulose nanocrystals. ACS Sustain. Chem. Eng. 2, 1241–1250 (2014)

    Article  CAS  Google Scholar 

  29. P. Lu, Y. Hsieh, Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87(1), 564–573 (2012)

    Article  CAS  Google Scholar 

  30. M.S. Usman, Zowalaty M.E. El, K. Shameli, N. Zainuddin, M. Salama, N.A. Ibrahim, Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 8, 4467–4479 (2013)

    Google Scholar 

  31. M. Zhu, C. Wang, D. Meng, G. Diao, In situ synthesis of silver nanostructures on magnetic Fe3O4@C core-shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A. 1(6), 2118–2125 (2013)

    Article  CAS  Google Scholar 

  32. A. Musa, M.B. Ahmad, M.Z. Hussein, S.M. Izham, K. Shameli, H.A. Sani, Synthesis of nanocrystalline cellulose stabilized copper nanoparticles. J. Nanomater. 2016, 8 (2016)

    Article  Google Scholar 

  33. P. Lu, Y. Hsieh, Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr. Polym. 82(2), 329–336 (2010)

    Article  Google Scholar 

  34. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  35. T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang, Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 015009 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the staff of the Department of Chemistry UPM, Institute of Advanced Technology (ITMA) for their help in this research, and the Institute of Bioscience (IBS/UPM) for technical assistance.

Authors contributions

AM carried out the experimental work. MBA, MZH, SMI and HAS, conceived of the study and coordinated the project. AM and MBA drafted the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aminu Musa or Mansor B. Ahmad.

Ethics declarations

Conflict of interest

The authors declare that have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musa, A., Ahmad, M.B., Hussein, M.Z. et al. Preparation, characterization and catalytic activity of biomaterial-supported copper nanoparticles. Res Chem Intermed 43, 801–815 (2017). https://doi.org/10.1007/s11164-016-2665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2665-x

Keywords

Navigation