Skip to main content
Log in

Preparation of flower-like Pd–graphene composites for simultaneous determination of catechol and hydroquinone

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Substrate-selective flower-like Pd nanoparticles were prepared using a simple electrodeposition method. The flower-like Pd–graphene nanocomposites showed excellent electrochemical properties, as proven by electrochemical impedance and cyclic voltammetry. Developed to serve as a sensor for simultaneous determination of catechol (CT) and hydroquinone (HQ), the Pd–graphene nanocomposite-modified glassy carbon electrode (Pd–graphene/GCE) displayed good electrochemical catalytic activity toward CT and HQ, which was attributed to the flower-like composite structure, i.e. high electrical conductivity and larger surface area of Pd–graphene nanocomposites. Several kinetic parameters were calculated, including the electron transfer number (n), proton transfer number (m), charge transfer coefficient (c), and apparent heterogeneous electron transfer rate constant (ks). Under optimized conditions, the oxidation peak current was linear over a range from 0.075 to 5 mM. The detection limits were 1.25 × 10−6 mol/L for HQ and 1.0 × 10−6 mol/L for CT (S/N = 3). The proposed Pd–graphene/GCE was applied to the simultaneous determination of HQ and CT in Songshan Lake water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.M. Khodaei, A. Alizadeh, N. Pakravan, J. Org. Chem. 73, 2527–2532 (2008)

    Article  CAS  Google Scholar 

  2. H.S. Yin, Q.M. Zhang, Y.L. Zhou, Q. Ma, T. Liu, L.S. Zhu, S.Y. Ai, Electrochim. Acta 56, 2748–2753 (2011)

    Article  CAS  Google Scholar 

  3. T. Xie, Q. Liu, Y. Shi, Q. Liu, J. Chromatogr. A 1109, 317–321 (2006)

    Article  CAS  Google Scholar 

  4. B.L. Lee, H.Y. Ong, C.Y. Shi, C.N. Ong, J. Chromatogr. B 619, 259–266 (1993)

    Article  CAS  Google Scholar 

  5. M.F. Pistonesi, M.S. Di Nezio, M.E. Centurión, M.E. Palomeque, A.G. Lista, B.S.F. Band, Talanta 69, 1265–1268 (2006)

    Article  CAS  Google Scholar 

  6. S. Moldoveanu, M. Kiser, J. Chromatogr. A 1141, 90–97 (2007)

    Article  CAS  Google Scholar 

  7. H. Cui, Q. Zhang, A. Myint, X. Ge, L. Liu, J. Photochem. Photobiol., A 181, 238–245 (2006)

    Article  CAS  Google Scholar 

  8. P. Nagaraja, R. Vasantha, K. Sunitha, Talanta 55, 1039–1046 (2001)

    Article  CAS  Google Scholar 

  9. M. Li, F. Ni, Y. Wang, S. Xu, D. Zhang, S. Chen, L. Wang, Electroanalysis 21, 1521–1526 (2009)

    Article  CAS  Google Scholar 

  10. E. Bakker, Anal. Chem. 76, 3285–3298 (2004)

    Article  CAS  Google Scholar 

  11. D. Zhang, Y. Peng, H. Qi, Q. Gao, C. Zhang, Sens. Actuators, B 136, 113–121 (2009)

    Article  CAS  Google Scholar 

  12. K.J. Huang, L. Wang, Y.J. Liu, T. Gan, Y.M. Liu, L.L. Wang, Y. Fan, Electrochim. Acta 107, 379–387 (2013)

    Article  CAS  Google Scholar 

  13. M.U.A. Prathap, B. Satpati, R. Srivastava, Sens. Actuators, B 186, 67–77 (2013)

    Article  Google Scholar 

  14. Z.M. Liu, Z.L. Wang, Y.Y. Cao, Y.F. Jing, Y.L. Liu, Sens. Actuators, B 157, 540–546 (2011)

    Article  CAS  Google Scholar 

  15. Z.C. Meng, H.F. Zhang, J.B. Zheng, Res. Chem. Intermed. 39, 1420–1429 (2013)

    Google Scholar 

  16. X.M. Ma, Z.N. Liu, C.C. Qiu, T. Chen, H.Y. Ma, Microchim. Acta 180, 461–468 (2013)

    Article  CAS  Google Scholar 

  17. D. Zhao, X. Zhang, L. Feng, L. Jia, S. Wang, Colloid. Surf. B 74, 317–321 (2009)

    Article  CAS  Google Scholar 

  18. Z.H. Huo, Y.L. Zhou, Q. Liu, X.L. He, Y. Liang, M.T. Xu, Microchim. Acta 173, 119–125 (2011)

    Article  CAS  Google Scholar 

  19. D. Li, R.B. Kaner, J. Mater. Sci. 320, 1170–1171 (2008)

    CAS  Google Scholar 

  20. M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Trends Anal. Chem. 29, 954–965 (2010)

    Article  CAS  Google Scholar 

  21. S.X. Wu, Q.Y. He, C.L. Tan, Y.D. Wang, H. Zhang, Small 9, 1160–1172 (2013)

    Article  CAS  Google Scholar 

  22. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101–105 (2008)

    Article  CAS  Google Scholar 

  23. Y.W. Cao, J.H. Feng, P.Y. Wu, Carbon 48, 3834–3839 (2010)

    Article  Google Scholar 

  24. Y.Y. Liang, D.Q. Wu, X.L. Feng, K. Müllen, Adv. Mater. 21, 1679–1683 (2009)

    Article  CAS  Google Scholar 

  25. Y.C. Si, E.T. Samulski, Chem. Mater. 20, 6792–6797 (2008)

    Article  CAS  Google Scholar 

  26. J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, Anal. Chim. Acta 709, 47–53 (2012)

    Article  CAS  Google Scholar 

  27. Y. Zhang, G.M. Zeng, L. Tang, J. Chen, Y. Zhu, X.X. He, Y. He, Anal. Chem. 87, 989–996 (2015)

    Article  CAS  Google Scholar 

  28. Y. Zhang, Y.H. Zhao, S.S. Yuan, H.G. Wang, C.D. He, Sens. Actuators, B 185, 602–607 (2013)

    Article  CAS  Google Scholar 

  29. S. Nalini, S. Nandini, S. Shanmugam, S.E. Neelagund, J.S. Melo, G.S. Suresh, J. Solid State Electrochem. 18, 685–701 (2014)

    Article  CAS  Google Scholar 

  30. P. Kissinger, W. Heineman, Laboraory techniques in electroanalytical chemistry (MarcelDekker Inc, New York, 1984), pp. 98–100

    Google Scholar 

  31. R.M. Penner, J. Phys. Chem. B 106, 3339–3353 (2002)

    Article  CAS  Google Scholar 

  32. Z.T. Luo, L.A. Somers, Y.P. Dan et al., Nano Lett. 10, 777–781 (2010)

    Article  CAS  Google Scholar 

  33. Q. Yi, W. Huang, X. Liu, G. Xu, Z. Zhou, A. Chen, J. Electroanal. Chem. 619–620, 197 (2008)

    Article  Google Scholar 

  34. E. Laviron, J. Electroanal. Chem. 101, 19–28 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the National Natural Science Foundation of China (20875106, 21375016, and 20475022), Guangdong Natural Science Foundation (No. 9151027501000003, S2013010014324), and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University (4299001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Gan, F. & Cheng, F. Preparation of flower-like Pd–graphene composites for simultaneous determination of catechol and hydroquinone. Res Chem Intermed 42, 813–826 (2016). https://doi.org/10.1007/s11164-015-2056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2056-8

Keywords

Navigation