Skip to main content
Log in

N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A three-component, NBS-promoted synthesis of α,β-unsaturated isoxazol-5(4H)-ones by reaction of aromatic aryl or hetero-aryl aldehydes, hydroxylamine hydrochloride, and 1,3-dicarbonyl compounds (ethyl acetoacetate or ethyl 4-chloroacetoacetate), under mild reaction conditions at room temperature is described. This simple, efficient, and clean reaction is an expeditious means of obtaining the corresponding isoxazol-5(4H)-one derivatives in good to high yields. Geometrical properties and vibrational wavenumbers of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one (MTISO) were predicted by use of density functional theory (DFT) by use of the B3LYP level with the 6-311++G(d,p) and 6-311++G(2d,p) basis sets. Results indicate that the B3LYP method enables satisfactory prediction of vibrational frequencies and structural data. The absorption spectra of MTISO in solvents of different polarity were studied at room temperature. The UV–visible spectrum of the compound was recorded and such electronic properties as the energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were determined by the time-dependent DFT (TD-DFT) approach. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization was studied by NBO analysis. A molecular electrostatic potential map (MEP) of the compound was also studied to predict reactive sites. Reactivity descriptors, Fukui functions, and electrophilic sites were found and are discussed. The thermal stability of MTISO was studied by thermogravimetric analysis (TGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Han, H. Guo, X.G. Wang, M.L. Pang, J.B. Meng, Chin. J. Chem. 25, 129 (2007)

    Article  CAS  Google Scholar 

  2. M. Pineiro, T.M.V.D. Pinho-e-Melo, Eur. J. Org. Chem. 31, 5287 (2009)

    Article  Google Scholar 

  3. S. Biju, M.L. Reddy, R.O. Freire, Inorg. Chem. Commun. 10, 393 (2007)

    Article  CAS  Google Scholar 

  4. E. Aret, H. Meekes, E. Vlieg, G. Deroover, Dyes Pigment. 72, 339 (2007)

    Article  CAS  Google Scholar 

  5. X.H. Zhang, Y.H. Zhan, D. Chen, F. Wang, L.Y. Wang, Dyes Pigment. 93, 1408 (2012)

    Article  CAS  Google Scholar 

  6. B. Kafle, N.G. Aher, D. Khadka, H. Park, H. Cho, Chem. Asian J. 6, 2073 (2011)

    Article  CAS  Google Scholar 

  7. H. Kano, I. Adachi, R. Kido, K. Hirose, J. Med. Chem. 10, 411 (1967)

    Article  CAS  Google Scholar 

  8. T. Karabasanagouda, A.V. Adhikari, M. Girisha, Indian J. Chem. 48B, 430 (2009)

    CAS  Google Scholar 

  9. A. Mor, S. Ahn, P. Izmirly, S. Reddy, J. Greenberg, C.O. Bingham, P.B. Rosenthal, Indian Phytopathol. 59, 370 (2006)

    Google Scholar 

  10. J. Getal, J. Antibiot. Antibiot. 28, 91 (1975)

    Article  Google Scholar 

  11. K. Bowden, G. Crank, W.J. Ross, J. Chem. Soc. C. 172 (1968). doi:10.1039/J39680000172

  12. C.H. Stammer, A.N. Wilson, C.F. Spencer, F.W. Bachelor, F.W. Holly, K. Folkers, J. Am. Chem. Soc. 79, 3236 (1957)

    Article  CAS  Google Scholar 

  13. Q. Liu, Y.N. Zhang, Bull. Korean Chem. Soc. 32, 3559 (2011)

    Article  CAS  Google Scholar 

  14. Q. Liu, X. Hou, Phosphorus, Sulfur Silicon. Relat. Elem. 187, 448 (2012)

    Article  CAS  Google Scholar 

  15. Q. Liu, R.T. Wu, J. Chem. Res. 35, 598 (2011)

  16. M. Mirzadeh, G.H. Mahdavinia, Eur. J. Chem. 9, 425 (2012)

    Google Scholar 

  17. S. Fozooni, N. Gholam Hosseinzadeh, H. Hamidian, M.R. Akhgar, J. Braz. Chem. Soc. 24, 1649 (2013)

    CAS  Google Scholar 

  18. F. Saikh, J. Das, S. Ghosh, Terahedron Lett. 54, 4679 (2013)

    Article  CAS  Google Scholar 

  19. K. Ablajan, H. Xiamuxi, Synth. Commun. 42, 1128 (2012)

    Article  CAS  Google Scholar 

  20. Q.F. Cheng, X.Y. Liu, Q.F. Wang, L.S. Liu, W.J. Liu, Q. Lin, X.J. Yang, Chin. J. Org. Chem. 29, 1267 (2009)

    CAS  Google Scholar 

  21. K. Ablajan, H. Xiamuxi, Chin. Chem. Lett. 22, 151 (2011)

    Article  CAS  Google Scholar 

  22. Y.Q. Zhang, J.J. Ma, C. Wang, J.C. Li, D.N. Zhang, X.H. Zang, J. Li, Chin. J. Org. Chem. 28, 141 (2008)

    Google Scholar 

  23. Y.Q. Zhang, C. Wang, M.Y. Zhang, P.L. Cui, Y.M. Li, X. Zhou, J.C. Li, Chin. J. Org. Chem. 28, 914 (2008)

    CAS  Google Scholar 

  24. H. Kiyani, Org. Chem. Indian J. 13, 97 (2013)

    Google Scholar 

  25. H. Kiyani, F. Ghorbani, Heterocycl. Lett. 3, 145 (2013)

    CAS  Google Scholar 

  26. H. Kiyani, F. Ghorbani, Heterocycl. Lett. 3, 359 (2013)

    CAS  Google Scholar 

  27. H. Kiyani, F. Ghorbani, Open. J. Org. Chem. 1, 5 (2013)

    Google Scholar 

  28. H. Kiyani, F. Ghorbani, Elixir Org. Chem. 58A, 14948 (2013)

    Google Scholar 

  29. H. Kiyani, F. Ghorbani, Res. Chem. Intermed. (2013). doi:10.1007/s11164-013-1411-x

  30. H. Kiyani, F. Ghorbani, J. Saudi Chem. Soc. (2013). doi:10.1016/j.jscs.2013.11.002

  31. M.J. Frisch et al., Gaussian 03, Revision C.01 (Gaussian, Inc., Wallingford, 2004), p. 255

  32. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  33. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  34. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989)

    Article  CAS  Google Scholar 

  35. R. Dennington, T. Keith, Millam Gaussview Version 5. Semichem Inc., Shawnee Mission KS (2009)

  36. A.P. Scott, L. Radom, J. Phys. Chem. 100, 16502 (1996)

    Article  CAS  Google Scholar 

  37. M. Karabacak, M. Cinar, M. Kurt, Spectrochim. Acta 74A, 1197 (2009)

    Article  CAS  Google Scholar 

  38. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1 (Gaussian Inc., Pittsburgh, 2003)

  39. C. Gündoğdu, S. Alp, Y. Ergün, B. Tercan, T. Hökelek, Acta Cryst. E67, 1321 (2011)

    Google Scholar 

  40. Q. Cheng, X.Y. Xu, L.S. Liu, L. Zhang, Acta Cryst. E65, 3012 (2009)

    Google Scholar 

  41. J. Mohan, Organic Spectroscopy—Principle and Applications, 2nd edn. (Narosa Publishing House, New Delhi, 2000)

    Google Scholar 

  42. G. Brancatelli, G. Bruno, F. Nicolò, M. Cordaro, G. Grassi, F. Risitano, A. Scala, J. Mol. Struct. 998, 157 (2011)

    Article  CAS  Google Scholar 

  43. R.M. Silverstein, G.C. Basseler, C. Morill (eds.), Spectroscopic Identification of Organic compounds (Wiley, New York, 1981)

    Google Scholar 

  44. T. Kupka, R. Wrzalik, G. Pasterna, K. Pasterny, J. Mol. Struct. 616, 17 (2002)

    Article  CAS  Google Scholar 

  45. D.K. Singh, S.K. Srivastava, A.K. Ojha, B.P. Asthana, J. Mol. Struct. 892, 384 (2008)

    Article  CAS  Google Scholar 

  46. A. Coruh, F. Yilmaz, B. Sengez, M. Kurt, M. Cinar, M. Karabacak, Struct. Chem. 22, 45 (2011)

    Article  CAS  Google Scholar 

  47. M. Szafran, A. Komasa, E.B. Adamska, J. Mol. Struct. (Theochem) 827, 101 (2007)

    Article  CAS  Google Scholar 

  48. N. Günay, H. Pir, D. Avcı, Y. Atalay, J. Chem. 2013, 1 (2012)

    Article  Google Scholar 

  49. J. Choo, S. Kim, H. Joo, Y. Kwon, J. Mol. Struct. (Theochem) 587, 1 (2002)

    Article  CAS  Google Scholar 

  50. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1995)

    Article  Google Scholar 

  51. R. Meenakshi, L. Jaganathana, S. Gunasekaranb, S. Srinivasan, Mol. Simul. 36, 425 (2010)

    Article  CAS  Google Scholar 

  52. H.O. Kalinowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy (Wiley, Chichester, 1988)

    Google Scholar 

  53. N. Subramania, N. Sundaraganesan, J. Jayabharathi, Spectrochim. Acta A 76, 259 (2010)

    Article  Google Scholar 

  54. E. Scrocco, J. Tomasi, Adv. Quant. Chem. 11, 115 (1978)

    Article  CAS  Google Scholar 

  55. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comp. Chem. 29, 839 (2008)

    Article  Google Scholar 

  56. K. Fukui, Science 218, 747 (1982)

    Article  CAS  Google Scholar 

  57. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218 (1998)

    Article  CAS  Google Scholar 

  58. B. Mennucci, J. Tomasi, J. Chem. Phys. 106, 5151 (1997)

    Article  CAS  Google Scholar 

  59. A. Airinei, M. Homocianu, D. Dorohoi, J. Mol. Liq. 157, 13 (2010)

    Article  CAS  Google Scholar 

  60. D.A. Kleinman, Phys. Rev. 126, 1977 (1962)

    Article  CAS  Google Scholar 

  61. A. Chandran, S. Mary, H.T. Varghese, C.Y. Panicker, T.K. Manojkumar, C.V. Alsenoy, G. Rajendran, ISRN Anal. Chemistry. 2012, 1 (2011)

    Article  Google Scholar 

  62. C. Adant, M. Dupuis, L. Bredas, Int. J. Quantum Chem. 56, 497 (2004)

    Article  Google Scholar 

  63. M.A. Palafox, Int. J. Quantum Chem. 77, 661 (2000)

    Article  CAS  Google Scholar 

  64. J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007)

    Article  CAS  Google Scholar 

  65. A.P. Garrido, A.M. Helguera, A.A. Guillén, M.N.D.S. Cordeirom, A.G. Escudero, Bioorg. Med. Chem. 17, 896 (2009)

    Article  Google Scholar 

  66. R. Parthasarathi, J. Padmanabhan, V. Subramanian, U. Sarkar, B. Maiti, P.K. Chattraj, Internet Electron. J. Mol. Des. 2, 798 (2003)

    CAS  Google Scholar 

  67. R.G. Parr, W. Yang, J. Am. Chem. Soc. 106, 4049 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Damghan University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamzeh Kiyani or Davood Ajloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiyani, H., Kanaani, A., Ajloo, D. et al. N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Res Chem Intermed 41, 7739–7773 (2015). https://doi.org/10.1007/s11164-014-1857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1857-5

Keywords

Navigation