Skip to main content
Log in

Vernonia cinerea (L.) Less. silver nanocomposite and its antibacterial activity against a cotton pathogen

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Noble-metal nanomaterials are of particular interest today because of their applications in many areas, including agriculture. The latter topic is one of the most active areas of research in metal nanomaterials. Metal nanoparticles are traditionally synthesized by wet chemical techniques, in which the chemicals used are often toxic and flammable. We report here biosynthesis of silver nanoparticles using leaf extract of Vernonia cinerea (L.) Less. (Asteraceae). Treatment of aqueous solution of AgNO3 with V. cinerea leaf extract resulted in rapid formation of stable silver nanoparticles. The growth of nanoparticles was monitored by UV–Visible spectrophotometry complemented by characterization using transmission electron microscopy (TEM), X-ray diffraction analysis, and Fourier-transform infrared spectroscopy. A feasible mechanism for the formation of nanomaterial and the difference in the reduction time for silver nanoparticle synthesis is discussed. TEM analysis revealed the presence of polydisperse silver nanoparticles with average size of 5–50 nm. X-ray diffraction studies corroborated that the biosynthesized nanoparticles were crystalline silver. Furthermore, this green biogenic approach is a rapid and simple alternative to chemical synthesis. The biologically synthesized silver nanoparticles were found to be highly effective against Xanthomonas campestris pv. malvacearum (13.00 ± 0.58 mm) with minimum inhibitory concentration of 80 µg/mL. Hence, such biosynthesized silver nanoparticles can be used in control of cotton bacterial blight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145, 83–96 (2009)

    Article  CAS  Google Scholar 

  2. T. Klaus, R. Joerger, E. Olsson, C.G. Granqvist, Proc. Natl. Acad. Sci. USA 96, 13611–13614 (1999)

    Article  CAS  Google Scholar 

  3. B. Nair, T. Pradeep, Cryst. Growth Des. 2, 293–298 (2002)

    Article  CAS  Google Scholar 

  4. Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi, T. Uruga, J. Biotechnol. 128, 648–653 (2007)

    Article  CAS  Google Scholar 

  5. I. Willner, R. Baron, B. Willner, Adv. Mater. 18, 1109–1120 (2006)

    Article  CAS  Google Scholar 

  6. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interface Sci. 275, 496–502 (2004)

    Article  CAS  Google Scholar 

  7. J.Y. Song, B.O. Kim, Bioprocess Biosyst. Eng. 32, 79–84 (2009)

    Article  Google Scholar 

  8. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Langmuir 19, 1357–1361 (2003)

    Article  CAS  Google Scholar 

  9. S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Biotechnol. Prog. 22, 577–583 (2006)

    Article  CAS  Google Scholar 

  10. B. Ankamwar, G. Mandal, U.K. Sur, T. Ganguly, Dig. J. Nanomater. Biostruct. 7(2), 599–605 (2012)

    Google Scholar 

  11. Y.Y. Loo, B.W. Chieng, M. Nishibuchi, S. Radu, Int. J. Nanomed. 7, 4263–4267 (2012)

    CAS  Google Scholar 

  12. K.B. Narayanan, N. Sakthivel, Mater. Lett. 62, 4588–4590 (2008)

    Article  CAS  Google Scholar 

  13. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, Nanotechnology 18, 105104 (2007)

    Article  Google Scholar 

  14. M. Sathishkumar, K. Sneha, S.W. Won, C.W. Cho, S. Kim, Y.S. Yun, Colloids Surf. B. Biointerfaces 73, 332–338 (2009)

    Article  CAS  Google Scholar 

  15. J. Kasthuri, K. Kathiravan, N. Rajendiran, J. Nanopart. Res. 11, 1075–1085 (2009)

    Article  CAS  Google Scholar 

  16. J. Kasthuri, S. Veerapandian, N. Rajendiran, Colloids Surf. B Biointerfaces 68, 55–60 (2009)

    Article  CAS  Google Scholar 

  17. C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan, N. Mohan, Colloids Surf. B Biointerfaces 76, 50–56 (2010)

    Article  CAS  Google Scholar 

  18. M. Sathishkumar, K. Sneha, Y.S. Yun, Biores. Tech. 101, 7958–7965 (2010)

    Article  CAS  Google Scholar 

  19. D. Philip, Physica E 42, 1417–1424 (2010)

    Article  CAS  Google Scholar 

  20. C. Mason, S. Vivekanandhan, M. Misra, A.K. Mohanty, World J. Nano Sci. Eng. 2, 47–52 (2012)

    Article  CAS  Google Scholar 

  21. S.P. Dubey, M. Lahtinenb, M. Sillanpää, Colloids Surf. A Physicochem. Eng. Aspects. 364, 34–41 (2010)

    Article  CAS  Google Scholar 

  22. S.S. Mahapatra, N. Karak, Mater. Chem. Phys. 112, 1114–1119 (2008)

    Article  CAS  Google Scholar 

  23. K. Xu, J. Wang, X. Kang, J. Chen, Mater. Lett. 63, 31–33 (2009)

    Article  CAS  Google Scholar 

  24. F. Yang, K.H. Wu, M. Liu, W. Lin, M. Hu, Mater. Chem. Phys. 113, 474–479 (2009)

    Article  CAS  Google Scholar 

  25. D. Tien, K. Tseng, C. Liao, T. Tsung, J. Alloys Compd. 473, 298–302 (2009)

    Article  CAS  Google Scholar 

  26. Y. Inoue, M. Hoshino, H. Takahashi, T. Noguchi, T. Murata, Y. Kanzaki, J. Inorg. Biochem. 92, 37–42 (2002)

    Article  CAS  Google Scholar 

  27. P. Totaro, M. Rambaldini, Interact. Cardiovasc. Thorac. Surg. 8, 153–154 (2009)

    Article  Google Scholar 

  28. E. Amato, Y.A. Diaz-Fernandez, A. Taglietti, P. Pallavicini, L. Pasotti, L. Cucca, C. Milanese, P. Grisoli, C. Dacarro, J.M. Fernandez-Hechavarria, V. Necchi, Langmuir 27(15), 9165–9173 (2011)

    Article  CAS  Google Scholar 

  29. A. Taglietti, Y.A. Diaz Fernandez, E. Amato, L. Cucca, G. Dacarro, P. Grisoli, V. Necchi, P. Pallavicini, L. Pasotti, M. Patrini, Langmuir 28, 8140–8148 (2012)

    Article  CAS  Google Scholar 

  30. B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 257–262 (2014)

    Article  CAS  Google Scholar 

  31. E.O. Iwalewa, O.J. Iwalewa, J.O. Adeboye, J. Ethnopharmacol. 86, 229–234 (2003)

    Article  CAS  Google Scholar 

  32. T.N. Mishra, R.S. Singh, J. Upadhyay, R. Srivastava, J. Nat. Prod. 47, 368–372 (1984)

    Article  Google Scholar 

  33. U.K. Mazumder, M. Gupta, L. Manikandan, P.K. Bhattacharya, P.K. Haldar, S. Roy, Phytomedicine 10, 185–188 (2003)

    Article  CAS  Google Scholar 

  34. U.K.M. Gupta, L. Mazumder, P.K. Manikandan, S. Haldar, C.C. Bhattacharya, Fitoterapia 74, 148–150 (2003)

    Article  Google Scholar 

  35. L. Vauterin, B. Hoste, K. Kersters, J. Swings, Int. J. Syst. Bact. 45, 472–489 (1995)

    Article  CAS  Google Scholar 

  36. L. Vauterin, J. Rademaker, J. Swings, Phytopathology 90, 677–682 (2003)

    Article  Google Scholar 

  37. B.D. Culity, Elements of X-ray diffraction, 2nd edn. (Edison-Wesley, USA, 1978)

    Google Scholar 

  38. N.W. Schaad, Laboratory guide for identification of plant pathogenic bacteria (American Phytopathological Society, St. Paul, 1988)

    Google Scholar 

  39. A. Benito, V. Ma, Manual de técnicas en microbiología clínica (Asociación Española de Farmacéuticos Analistas, San Sebastián, 1990)

    Google Scholar 

  40. J.N. Eloff, Planta Med. 64, 711–713 (1998)

    Article  CAS  Google Scholar 

  41. B.J. Wiley, S.H. Im, J. Mc Lellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B 110(32), 15666–15675 (2006)

    Article  CAS  Google Scholar 

  42. M.A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B.A. Ritzo, V.P. Drachev, V.M. Shalaev, Appl. Phys. B 86, 458–460 (2006)

    Google Scholar 

  43. S.S. Nath, D. Chakdar, G. Gope, J. Nanotechnol. Appl. 2(3) (2007)

  44. S.P. Dubey, M. Lahtinen, H. Särkkäa, M. Sillanpää, Colloids Surf. B Biointerfaces 80, 26–33 (2010)

    Article  CAS  Google Scholar 

  45. C. Petit, P. Lixon, M.P. Pileni, J. Phys. Chem. 97, 12974–12983 (1993)

    Article  CAS  Google Scholar 

  46. A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, J. Am. Chem. Soc. 124, 12108–12109 (2002)

    Article  CAS  Google Scholar 

  47. H. Kong, J. Jang, Chem. Commun. 28, 3010–3012 (2006)

    Article  Google Scholar 

  48. G. Singaravelu, J. Arockiamary, K. Ganesh, K. Govindaraju, Colloids Surf. B Biointerfaces 57, 97–101 (2007)

    Article  CAS  Google Scholar 

  49. J.A. Creighton, D.G. Eadont, J. Chem. Soc. Faraday Trans. 87, 3881–3891 (1991)

    Article  CAS  Google Scholar 

  50. N.A. Begum, S. Mandal, S. Basu, A.R. Laskar, D. Mandal, Colloids Surf. B Biointerfaces 71, 113–118 (2009)

    Article  CAS  Google Scholar 

  51. S.K. Sivaraman, I. Elango, S. Kumar, V. Santhanam, Curr. Sci. 97(7), 1055–1059 (2009)

    CAS  Google Scholar 

  52. I. Poljanšek, M. Krajnc, Acta Chim. Slov. 52, 238–244 (2005)

    Google Scholar 

  53. I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177–182 (2004)

    Article  CAS  Google Scholar 

  54. M. Yamanaka, K. Hara, J. Kudo, Appl. Environ. Microbiol. 71, 7589–7593 (2005)

    Article  CAS  Google Scholar 

  55. Y. Matsumura, K. Yoshikata, S. Kunisaki, T. Tsuchido, Appl. Environ. Microbiol. 69, 4278–4281 (2003)

    Article  CAS  Google Scholar 

  56. V. Sambhy, M.M. MacBride, B.R. Peterson, J. Am. Chem. Soc. 128, 9798–9808 (2006)

    Article  CAS  Google Scholar 

  57. K.B. Holt, A.J. Bard, Biochemistry 44, 13214–13222 (2005)

    Article  CAS  Google Scholar 

  58. P.D. Bragg, D.J. Rainnie, Can. J. Microbiol. 20, 883–889 (1974)

    Article  CAS  Google Scholar 

  59. G. McDonnell, A.D. Russell, Clin. Microbiol. Rev. 12, 147–179 (1999)

    CAS  Google Scholar 

  60. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mater. Res. 52, 662–668 (2000)

    Article  CAS  Google Scholar 

  61. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, Nanotechnology 16, 2346–2353 (2005)

    Article  CAS  Google Scholar 

  62. H.Y. Song, K.K. Ko, L.H. Oh, B.T. Lee, Eur. Cells Mater. 11, 58 (2006)

    Google Scholar 

  63. C. Baker, A. Pradhan, L. Pakstis, D.J. Pochan, S.I. Shah, J. Nanosci. Nanotechnol. 5, 244 (2005)

    Article  CAS  Google Scholar 

  64. O. Choi, Z. Hu, Environ. Sci. Technol. 42, 4583 (2008)

    Article  CAS  Google Scholar 

  65. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  66. P. Mulvaney, Langmuir 12, 788–800 (1996)

    Article  CAS  Google Scholar 

  67. S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microbiol. 27(6), 1712–1720 (2007)

    Article  Google Scholar 

  68. S. Rajesh, D. Patric Raja, J.M. Rathi, K. Sahayaraj, J. Biopesti. 5, 119–128 (2012)

    CAS  Google Scholar 

  69. K. Sahayaraj, S. Rajesh, Science against microbial pathogens: communicating current research and technological advances ed. by Antonio Méndez-Vilas, vol 1 (Formatex Research Center, Spain, 2011), p. 228–244

Download references

Acknowledgments

Senior author K.S. acknowledges financial support from the Ministry of Earth Science, New Delhi (ref. no. MRDF/01/33/P/07) provided for this work. We would like to thank the DST unit of Nanoscience IIT, Madras for TEM analysis and Karunya University, Coimbatore for XRD and SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sahayaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahayaraj, K., Roobadevi, M., Rajesh, S. et al. Vernonia cinerea (L.) Less. silver nanocomposite and its antibacterial activity against a cotton pathogen. Res Chem Intermed 41, 5495–5507 (2015). https://doi.org/10.1007/s11164-014-1676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1676-8

Keywords

Navigation