Skip to main content
Log in

Efficient synthesis via azide–alkyne Huisgen [3+2] cycloaddition reaction and antifungal activity studies of novel triazoloquinolines

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

New functionalized 1,2,3-triazoloquinolines were achieved by intramolecular azide–alkyne Huisgen [3+2] cycloaddition. These derivatives were synthesized via the key Baylis–Hillman adduct under mild, neutral conditions in short duration and consistently good yield. The structures of final compounds were characterized by spectral analysis. Antifungal activities of these analogues against Trichophyton mentagrophytes, Candida albicans, and Aspergillus niger were also assayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. M. Jilino, M.F.G. Stevens, J. Chem. Soc. Perkin Trans. 1, 1677–1684 (1998)

    Article  Google Scholar 

  2. M.D. Chen, S.J. Lu, G.P. Yuag, S.Y. Yang, X.L. Du, Hetrocycl. Commun. 6, 421–426 (2000)

    CAS  Google Scholar 

  3. R.J. Singh, Rasayan J. Chem. 2, 706–708 (2009)

    CAS  Google Scholar 

  4. M.I. Husain, M. Amir, J. Indian Chem. Soc. 63, 317–319 (1986)

    CAS  Google Scholar 

  5. A. Passannanti, P. Diana, P. Barraja, F. Mingoia, A. Lauria, G. Cirrincione, Heterocycles 48, 1229–1235 (1998)

    Article  CAS  Google Scholar 

  6. C. Temle Jr, Chem. Hetyrocycl. Compd. 37, 1 (1981)

    Google Scholar 

  7. J.B. Polya, M. Woodruff, Aust. J. Chem. 26, 1585 (1973)

    Article  CAS  Google Scholar 

  8. C. Calzolari, L. Favretto, Analyst 93, 494 (1968)

    Article  CAS  Google Scholar 

  9. M. Mokotoff, M. Jhao, S.M. Roth, J.A. Shelley, J.N. Slavoskiand, N.M. Kouttab, J. Med. Chem. 33, 354 (1990)

    Article  CAS  Google Scholar 

  10. S. Manfredini, C.B. Vicentini, M. Manfrini, N. Bianchi, C. Rutigliano, C. Mischiati, R. Gambari, Bioorg. Med. Chem. 8, 2343–2346 (2000)

    Article  CAS  Google Scholar 

  11. S. Danoun, G. Baziard-Mouysset, J. Stigliani, M. Payard, M. Selkti, B. Viossat, A. Thomas, Hetrocycl. Commun. 4, 45–51 (1998)

    CAS  Google Scholar 

  12. S. Pautus, S. Yee, M. Jayne, M.P. Coogan, C. Simons, Bioorg. Med. Chem. 14, 3653–4643 (2006)

    Article  Google Scholar 

  13. D. Kim, J. Kim, H. Park, Bioorg. Med. Chem. 12, 2014–2020 (2004)

    Google Scholar 

  14. P. Zoumpoulakis, C. Camoutsis, G. Pairas, M. Sokovic, J. Glamoclija, C. Potamitis, A. Pitsas, Bioorg. Med. Chem. 20, 1569–1583 (2012)

    Article  CAS  Google Scholar 

  15. T. Weide, S.A. Saldanha, D. Minod, T.P. Spicer, J.R. Fotsing, M. Spaargaren, J.-M. Frere, C. Bebrone, K.B. Sharpless, P.S. Hodder, V.V. Fokin, ACS Med. Chem. Lett. 1(4), 150–154 (2010)

    Article  CAS  Google Scholar 

  16. G. Biagi, V. Calderone, I. Giorgi, O. Livi, E. Martinotti, A. Martelli, A. Nrdi, Farmaco 59, 397–404 (2004)

    Article  CAS  Google Scholar 

  17. N. Saravanan, M. Arthanareeswari, P. Kamaraj, Int. J. Chem. 34, 1143–1147 (2013) ISSN: 2051-3240

  18. L. Ackermann, H.K. Potukuchi, Org. Biomol. Chem. 8, 4503–4513 (2010)

    Article  CAS  Google Scholar 

  19. C.W. Tornoe, C. Christensen, M. Meldal, Chem. Rev. 108, 2952–3015 (2008)

    Article  Google Scholar 

  20. P. Thirumuruga, D. Matosiuk, K. Jozwaik, Chem. Rev. 113, 4905-4979 (2013)

  21. C.H. Wong, S.C. Zimmerman, Chem. Commun. 49, 1679–1695 (2013)

    Article  CAS  Google Scholar 

  22. L. Casarrubios, M.C. de la Torre, M.A. Sierra, Chem. Eur. J. 19, 3534–3541 (2013)

    Article  CAS  Google Scholar 

  23. H.Y. Hsieh, W.C. Lee, G.C. Senadi, W.P. Hu, J.J. Liang, T.R. Tsai, Y.W. Chou, K.K. Kuo, C.Y. Chen, J.J. Wang, J. Med. Chem. 56, 5422–5435 (2013)

    Article  CAS  Google Scholar 

  24. M.E. Meza Avina, M.K. Patel, C.B. Lee, T.J. Dietz, M.P. Croatt, Org. Lett. 13, 2984–2987 (2011)

    Article  CAS  Google Scholar 

  25. R.V. Patel, S.W. Park, Eur. J. Med. Chem. 71, 24–30 (2014)

    Article  CAS  Google Scholar 

  26. D. Basavaiah, P. Darma Rao, R.S. Hyma, Tetrahedron 52, 8001–8062 (1996)

    Article  CAS  Google Scholar 

  27. S.E. Drewes, G.H.P. Roos, Tetrahedron 44, 4653–4670 (1988)

    Article  CAS  Google Scholar 

  28. G.P. Black, F. Dinon, S. Fratucello, P.J. Murphy, M. Nielsen, H.L. Williams, Tetrahedron Lett. 38, 8561–8564 (1997)

    Article  CAS  Google Scholar 

  29. L.J. Brzezinski, S. Rafel, J.W. Leahy, Tetrahedron 53, 16423–16434 (1997)

    Article  CAS  Google Scholar 

  30. O. Meth-Cohn, B. Narine, B. Tarnowski, J. Chem. Soc. Perkin Trans. 1, 1520–1530 (1981)

    Article  Google Scholar 

  31. M. Zahid, V.O. Iaroshenko, A. Saghyan, C. Fischer, Tetrahedron 69, 3451–3458 (2013)

    Article  CAS  Google Scholar 

  32. V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed. 41, 2596–2599 (2002)

    Article  CAS  Google Scholar 

  33. B.A.A. Skaggs et al., J. Clin. Microbiol. 38, 2254–2260 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Chemistry, SRM University for providing the laboratory facilities to carry out the research work. The authors are also grateful to Dr. Suresh for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Saravanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, N., Arthanareeswari, M., Kamaraj, P. et al. Efficient synthesis via azide–alkyne Huisgen [3+2] cycloaddition reaction and antifungal activity studies of novel triazoloquinolines. Res Chem Intermed 41, 5379–5388 (2015). https://doi.org/10.1007/s11164-014-1638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1638-1

Keywords

Navigation