Skip to main content
Log in

Critical assessment of two classical synthetic methods for preparation of thiophene-substituted isoxazoles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Formation of thiophene-substituted isoxazoles by reaction of chalcone dibromides and 1,3-diketones with hydroxylamine hydrochloride has been examined under different conditions. Use of KOH as base in the reaction of dibromide chalcone analogs with hydroxylamine hydrochloride yields mixtures of isomeric isoxazoles in modest yields. Replacement of KOH with pyridine affords negligible amounts of isoxazoles only, the intermediate 2-bromoprop-2-en-1-one being isolated from the reaction as the major product. Substitution of the β-bromine atom from a chalcone dibromides with a methoxy group by solvolysis occurred when no base was used. Mixtures of isomeric isoxazoles in which the isoxazole that had a 2-thienyl group at position 5 were always major components, were obtained in good yields from reaction of thiophene-containing 1,3-diketones with hydroxylamine hydrochloride, irrespective of reaction pH. At low pH, regioselectivity was poorer than that observed for reaction of chalcone dibromides with hydroxylamine hydrochloride, but yields were substantially better. At high pH, yields were comparable with those at low pH and regioselectivity for 3-aryl-5-(2-thiophenyl)isoxazole was slightly enhanced, but the dioxime corresponding to the initial 1,3-diketone was also produced in low yields as a mixture of stereoisomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. P. Grünanger, P. Vita-Finzi, in The Chemistry of Heterocyclic Compounds, vol. 49, Part 1, ed. by E.C. Taylor (Wiley, New York, 1991)

  2. D. Giomi, F.M. Cordero, F. Machetti, in Comprehensive Heterocyclic Chemistry III, vol. 4, ed. by A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven, R.J.K. Taylor (Elsevier, Oxford, 2008), pp. 365–485

    Chapter  Google Scholar 

  3. Y.-T. Li, C.-L. Chen, Y.-Y. Hsu, H.-C. Hsu, Y. Chi, B.-S. Chen, W.-H. Liu, C.-H. Lai, T.-Y. Lin, P.-T. Chou, Tetrahedron 66, 4223–4229 (2010)

    Article  CAS  Google Scholar 

  4. Z. Yang, K. Zhang, F. Gong, S. Li, J. Chen, J.S. Ma, L.N. Sobenina, A.I. Mikhaleva, G. Yang, B.A. Trofimov, Beilstein J. Org. Chem. 7, 46–52 (2011)

    Article  CAS  Google Scholar 

  5. K.E. Pallett, S.M. Cramp, J.P. Little, P. Veerasekaran, A.J. Crudace, A.E. Slater, Pest Manag. Sci. 57, 133–142 (2001)

    Article  CAS  Google Scholar 

  6. D.R. dos Santos, A.G. Silva de Oliveira, R.L. Coelho, I.M. Begnini, R.F. Magnago, L. da Silva, ARKIVOC (xvii), 157–166 (2008)

  7. A.A. Vieira, F.R. Bryk, G. Conte, A.J. Bortoluzzi, H. Gallardo, Tetrahedron Lett. 50, 905–908 (2009)

    Article  CAS  Google Scholar 

  8. R.P. Clausen, E.K. Moltzen, J. Perregaard, S.M. Lenz, C. Sanchez, E. Falch, B. Frølund, T. Bolvig, A. Sarup, O.M. Larsson, A. Schousboe, P. Krogsgaard-Larsen, Bioorg. Med. Chem. 13, 895–908 (2005)

    Article  CAS  Google Scholar 

  9. B. Frølund, L.S. Jensen, L. Guandalini, C. Canillo, H.T. Vestergaard, U. Kristiansen, B. Nielsen, T.B. Stensbøl, C. Madsen, P. Krogsgaard-Larsen, T. Liljefors, J. Med. Chem. 48, 427–439 (2005)

    Article  CAS  Google Scholar 

  10. P. Krogsgaard-Larsen, B. Frølund, T. Liljefors, B. Ebert, Biochem. Pharmacol. 68, 1573–1580 (2004)

    Article  CAS  Google Scholar 

  11. E. Nakayama, K. Watanabe, M. Miyauchi, K. Fujimoto, J. Ide, J. Antibiot. (Tokyo) 43, 1122–1130 (1990)

    Article  CAS  Google Scholar 

  12. S. Batra, T. Srinivasan, S.K. Rastogi, B. Kundu, A. Patra, A.P. Bhaduri, M. Dixit, Bioorg. Med. Chem. Lett. 12, 1905–1908 (2002)

    Article  CAS  Google Scholar 

  13. S. Batra, A.K. Roy, A. Patra, A.P. Bhaduri, W.R. Surin, S.A.V. Raghavan, P. Sharma, K. Kapoor, M. Dikshit, Bioorg. Med. Chem. 12, 2059–2077 (2004)

    Article  CAS  Google Scholar 

  14. B. Loh, L. Vozzolo, B.J. Mok, C.C. Lee, R.J. Fitzmaurice, S. Caddick, A. Fassati, Chem. Biol. Drug Des. 75, 461–474 (2010)

    Article  CAS  Google Scholar 

  15. Y.S. Lee, S.M. Park, B.H. Kim, Bioorg. Med. Chem. Lett. 19, 1126–1128 (2009)

    Article  CAS  Google Scholar 

  16. V.E. Kuz’min, A.G. Artemenko, E.N. Muratov, I.L. Volineckaya, V.A. Makarov, O.B. Riabova, P. Wutzler, M. Schmidtke, J. Med. Chem. 50, 4205–4213 (2007)

    Article  CAS  Google Scholar 

  17. F. Chevreuil, A. Landreau, D. Séraphin, G. Larcher, S. Mallet, J.-P. Bouchara, P. Richomme, J. Enzyme Inhib. Med. Chem. 22, 563–569 (2007)

    Article  CAS  Google Scholar 

  18. M. Tomishima, H. Ohki, A. Yamada, K. Maki, F. Ikeda, Bioorg. Med. Chem. Lett. 18, 2886–2890 (2008)

    Article  CAS  Google Scholar 

  19. X. Han, C. Li, M.D. Mosher, K.C. Rider, P. Zhou, R.L. Crawford, W. Fusco, A. Paszczynski, N.R. Natale, Bioorg. Med. Chem. 17, 1671–1680 (2009)

    Article  CAS  Google Scholar 

  20. M.W. Amolins, L.B. Peterson, B.S.J. Blagg, Bioorg. Med. Chem. 17, 360–367 (2009)

    Article  CAS  Google Scholar 

  21. S.F.M. Tohid, N.I. Ziedan, F. Stefanelli, S. Fogli, A.D. Westwell, Eur. J. Med. Chem. 56, 263–270 (2012)

    Article  CAS  Google Scholar 

  22. J. Mao, H. Yuan, Y. Wang, B. Wan, M. Pieroni, Q. Huang, R.B. van Breemen, A.P. Kozikowski, S.G. Franzblau, J. Med. Chem. 52, 6966–6978 (2009)

    Article  CAS  Google Scholar 

  23. C. Changtam, P. Hongmanee, A. Suksamrarn, Eur. J. Med. Chem. 45, 4446–4457 (2010)

    Article  CAS  Google Scholar 

  24. M. Pieroni, A. Lilienkampf, Y. Wang, B. Wan, S. Cho, S.G. Franzblau, A.P. Kozikowski, ChemMedChem 5, 1667–1672 (2010)

    Article  CAS  Google Scholar 

  25. T.M.V.D. Pinho e Melo, Curr. Org. Chem. 9, 925–958 (2005)

    Article  CAS  Google Scholar 

  26. F. Himo, T. Lovell, R. Hilgraf, V.V. Rostovtsev, L. Noodleman, K.B. Shapless, V.V. Fokin, J. Am. Chem. Soc. 127, 210–216 (2005)

    Article  CAS  Google Scholar 

  27. T.V. Hansen, P. Wu, V.V. Fokin, J. Org. Chem. 70, 7761–7764 (2005)

    Article  CAS  Google Scholar 

  28. F.G. Weber, Z. Chem. 10, 143–144 (1970)

    Article  CAS  Google Scholar 

  29. F.G. Weber, Tetrahedron 26, 2507–2514 (1970)

    Article  CAS  Google Scholar 

  30. A.L. Baumstark, D.R. Chrisope, R.A. Keel, D.W. Boykin, J. Heterocycl. Chem. 17, 1719–1721 (1980)

    Article  CAS  Google Scholar 

  31. C.E. Stephens, R.K. Arafa, J. Chem. Educ. 83, 1336–1340 (2006)

    Article  CAS  Google Scholar 

  32. J. Larkin, M.G. Murray, D.C. Nonhebel, J. Chem. Soc. C 947–949 (1970)

  33. T. Lesiak, S. Nielek, Chem. Heterocycl. Compd. 11, 137–140 (1975)

    Article  Google Scholar 

  34. M.M.M. Ramiz, W.A. El-Sayed, A.I. El-Tantawy, A.A.-H. Abdel-Rahman, Arch. Pharm. Res. 33, 647–654 (2010)

    Article  CAS  Google Scholar 

  35. D. Azarifar, K. Khosravi, R.-A. Veisi, ARKIVOC (ix), 178–184 (2010)

  36. R.P. Barnes, T.C. Goodwin Jr, T.W. Cotton Jr, J. Am. Chem. Soc. 69, 3135–3138 (1947)

    Article  CAS  Google Scholar 

  37. S.S. Thakare, A.G. Doshi, Asian J. Chem. 13, 780–782 (2000)

    Google Scholar 

  38. Y. Budak, M. Ceylam, Chin. J. Chem. 27, 1575–1581 (2009)

    Article  CAS  Google Scholar 

  39. C.L. Bickel, J. Am. Chem. Soc. 69, 2134–2136 (1947)

    Article  CAS  Google Scholar 

  40. W.B. Black, R.E. Lutz, J. Am. Chem. Soc. 77, 5134–5140 (1955)

    Article  CAS  Google Scholar 

  41. G.E. Southard, G.M. Murray, J. Org. Chem. 70, 9036–9039 (2005)

    Article  CAS  Google Scholar 

  42. Yu.K. Yur’ev, N.V. Magdesieva, V.V. Titov, Zh. Obshch. Khim. 34, 1078–1081 (1964)

    Google Scholar 

  43. E. Belgodere, R. Bossio, F. De Sio, S. Marcaccini, R. Pepino, Heterocycles 20, 501–504 (1983)

    Article  CAS  Google Scholar 

  44. C.-J. Zheng, S.-M. Jiang, Z.-H. Chen, B.-J. Ye, H.-R. Piao, Arch. Pharm. (Weinheim) 344, 689–695 (2011)

    Article  CAS  Google Scholar 

  45. R. Laliberté, J. Manson, H. Warwick, G. Medawar, Can. J. Chem. 46, 1952–1956 (1968)

    Article  Google Scholar 

  46. L. Greiner-Bechert, H.-H. Otto, Arch. Pharm. (Weinheim) 324, 563–572 (1991)

    Article  CAS  Google Scholar 

  47. G. Dannhardt, W. Kiefer, G. Krämer, S. Maehrlein, U. Nowe, B. Fiebich, Eur. J. Med. Chem. 35, 499–510 (2000)

    Article  CAS  Google Scholar 

  48. S.A. Basaif, T.R. Sobahi, A.K. Khalil, M.A. Hassan, Bull. Korean Chem. Soc. 26, 1677–1681 (2005)

    Article  CAS  Google Scholar 

  49. J.K. Sneed, R. Levine, J. Am. Chem. Soc. 72, 5219–5220 (1950)

    Article  CAS  Google Scholar 

  50. N. Latif, N. Mishriky, N.S. Girgis, Indian J. Chem. 15B, 118–120 (1977)

    CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 264115—STREAM. The assistance of Miss Mihaela Bălan with the 2D NMR experiments is gratefully acknowledged. The author thanks Dr Mihaela Silion for her valuable help with the mass spectrometry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Roman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1605 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman, G. Critical assessment of two classical synthetic methods for preparation of thiophene-substituted isoxazoles. Res Chem Intermed 40, 2039–2057 (2014). https://doi.org/10.1007/s11164-013-1101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1101-8

Keywords

Navigation