Skip to main content
Log in

Sorption of Bi3+ from acidic solutions using nano-hydroxyapatite extracted from Persian corals

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nano-crystallite hydroxyapatite (nano-HAp) synthesized from Persian corals was used for removing Bi3+ from acidic aqueous solutions. The effects of initial concentration, adsorbent dosage, contact time and temperature were studied in batch experiments. The sorption of Bi3+ by nano-HAp increased as the initial concentration of bismuth ion increased in the medium. The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to study the kinetics of the sorption processes. The pseudo-second-order kinetic model provided the best correlation (R 2 > 0.999) of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. Various thermodynamic parameters, such as \( \Updelta G^\circ \), \( \Updelta H^\circ \) and \( \Updelta S^\circ \) were calculated. Thermodynamics of Bi3+ cation sorption onto nano-HAp system pointed at spontaneous and endothermic nature of the process. The maximum Bi3+ adsorbed was found to be 3,333.33 mg g−1. It was found that the sorption of Bi3+ on nano-HAp correlated well (R 2 = 0.979) with the Langmuir equation as compared to Freundlich and Dubinin–Kaganer–Radushkevich (D-K-R) isotherm equations under the concentration range studied. This study indicated that nano-HAp extracted from Persian corals could be used as an efficient adsorbent for removal of Bi3+ from acidic aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Tokman, S. Akman, Anal. Chim. Acta 519, 87 (2004)

    Article  CAS  Google Scholar 

  2. J.A. Reyes-Aguilera, M.P. Gonzalez, R. Navarro, T.I. Saucedo, M. Avila-Rodriguez, J. Membr. Sci. 310, 13 (2008)

    Article  CAS  Google Scholar 

  3. R. Pamphlett, M. Stoltenberg, J. Rungby, G. Danscher, Neurotoxicol. Teratol. 22, 559 (2000)

    Article  CAS  Google Scholar 

  4. I. Mobasherpour, E. Salahi, M. Pazouki, Desalination 266, 142 (2011)

    Article  CAS  Google Scholar 

  5. X.-B. Chen, J.V. Wright, J.L. Conca, L.M. Peurrung, Environ. Sci. Technol. 31, 624 (1997)

    Article  CAS  Google Scholar 

  6. V. Laperche, S.J. Traina, P. Gaddam, T.J. Logan, Environ. Sci. Technol. 30, 3321 (1996)

    Article  CAS  Google Scholar 

  7. Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, Environ. Sci. Technol. 27, 1803 (1993)

    Article  CAS  Google Scholar 

  8. Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, Environ. Sci. Technol. 28, 1219 (1994)

    Article  CAS  Google Scholar 

  9. E. Mavropoulos, A.M. Rossi, A.M. Costa, C.A.C. Perez, J.C. Moreira, M. Saldanha, Environ. Sci. Technol. 36, 1625 (2002)

    Article  CAS  Google Scholar 

  10. A. Nzihou, P. Sharrock, Waste Manag 22, 235 (2002)

    Article  CAS  Google Scholar 

  11. Y. Takeuchi, H. Arai, J. Chem. Eng. Jpn. 23, 75 (1990)

    Article  CAS  Google Scholar 

  12. J.A. Elliott, L. Tamarkin, J. Comp. Physiol. A 174, 469 (1994)

    Article  CAS  Google Scholar 

  13. H. Tanaka, M. Futaoka, R. Hino, K. Kandori, T. Ishikawa, J. Colloid Interface Sci. 283, 609 (2005)

    Article  CAS  Google Scholar 

  14. C.C. Fuller, J.R. Bargar, J.A. Davis, M.J. Piana, Environ. Sci. Technol. 36, 158 (2001)

    Article  CAS  Google Scholar 

  15. A.G. Leyva, J. Marrero, P. Smichowski, D. Cicerone, Environ. Sci. Technol. 35, 3669 (2001)

    Article  CAS  Google Scholar 

  16. S. McGrellis, J.-N. Serafini, J. JeanJean, J.-L. Pastol, M. Fedoroff, Sep. Purif. Technol. 24, 129 (2001)

    Article  CAS  Google Scholar 

  17. J. Reichert, J.G.P. Binner, J. Mater. Sci. 31, 1231 (1996)

    Article  CAS  Google Scholar 

  18. E.D. Vega, J.C. Pedregosa, G.E. Narda, J. Phys. Chem. Solids 60, 759 (1999)

    Article  CAS  Google Scholar 

  19. G. Guillemin, J.L. Patat, J. Fournie, M. Chetail, J. Biomed. Mater. Res. 21, 557 (1987)

    Article  CAS  Google Scholar 

  20. L. Merrill, W.A. Basset, Acta Crystallogr. B31, 343 (1975)

    Article  CAS  Google Scholar 

  21. Z. Aksu, S. Tezer, Process Biochem. 40, 1347 (2005)

    Article  CAS  Google Scholar 

  22. W.J. Weber Jr, J.C. Morris, Am Soc Civil Eng 89, 31 (1963)

    Google Scholar 

  23. I. Smičiklas, S. Dimović, I. Plećaš, M. Mitrić, Water Res. 40, 2267 (2006)

    Article  CAS  Google Scholar 

  24. S. Lu, S.W. Gibb, Bioresour. Technol. 99, 1509 (2008)

    Article  CAS  Google Scholar 

  25. Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999)

    Article  CAS  Google Scholar 

  26. M. Doğan, M. Alkan, Chemosphere 50, 517 (2003)

    Article  Google Scholar 

  27. Y.-S. Ho, Water Res. 37, 2323 (2003)

    Article  CAS  Google Scholar 

  28. Z. Aksu, Process Biochem. 38, 89 (2002)

    Article  CAS  Google Scholar 

  29. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  CAS  Google Scholar 

  30. E. Malkoç, Y. Nuhoglu, Fresenius Environ. Bull. 12, 376 (2003)

    Google Scholar 

  31. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Sep. Purif. Technol. 24, 497 (2001)

    Article  CAS  Google Scholar 

  32. S. Hasany, M. Saeed, M. Ahmed, J. Radioanal. Nucl. Chem. 252, 477 (2002)

    Article  CAS  Google Scholar 

  33. S. Khan, M. Williams, Post-Tensioned Concrete Floors (Butterworth-Heinemann, Oxford, 1995), p. 271

    Book  Google Scholar 

  34. S.-H. Lin, R.-S. Juang, J. Hazard. Mater. 92, 315 (2002)

    Article  CAS  Google Scholar 

  35. C.-C. Wang, L.-C. Juang, C.-K. Lee, T.-C. Hsu, J.-F. Lee, H.-P. Chao, J. Colloid Interface Sci. 280, 27 (2004)

    Article  CAS  Google Scholar 

  36. B.S. Krishna, D.S.R. Murty, B.S. Jai Prakash, J. Colloid Interface Sci. 229, 230 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was completely supported by Materials and Energy Research Center (MERC) under the project No. 371390051 for which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mobasherpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, S., Salahi, E. & Mobasherpour, I. Sorption of Bi3+ from acidic solutions using nano-hydroxyapatite extracted from Persian corals. Res Chem Intermed 40, 1753–1770 (2014). https://doi.org/10.1007/s11164-013-1078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1078-3

Keywords

Navigation