Skip to main content
Log in

Autocatalytic dehydrogenation of propane

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Homogeneous gas-phase pyrolysis of propane was performed by using continuous CO2 laser irradiation for bulk heating of the reaction mixture. Laser energy was absorbed by ethylene, the main product of propane dehydrogenation, and transferred to the reaction medium via collisional relaxation. A mechanism of propane dehydrogenation is suggested to describe the pyrolysis process. The mechanism involves autocatalysis by ethylene and includes propane–ethylene interaction with the formation of ethyl and propyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. N.N. Semenov, Some Problems of Chemical Kinetics and Reactivity (Pergamon Press, London, 1958), p. 59

    Google Scholar 

  2. F.O. Rice, K.F. Herzfeld, J. Am. Chem. Soc. 56, 284 (1934)

    Article  CAS  Google Scholar 

  3. M.M. Papic, K.J. Laidler, Can. J. Chem. 49, 535 (1971)

    Article  CAS  Google Scholar 

  4. A. Lifshitz, M. Frenclach, J. Phys. Chem. 79(7), 686 (1975)

    Article  CAS  Google Scholar 

  5. A.M. Starik, N.S. Titova, L.S. Yanovskii, Kinet. Catal. 40(1), 7 (1999)

    CAS  Google Scholar 

  6. M.G. Ktalkherman, High Temp. 47, 5 (2009)

    Article  Google Scholar 

  7. M.E. Dente, E.M. Ranzi, In Pyrolysis: Theory and Industrial Practice, vol. 133 ed. by L.F. Albriht, B.L. Crynes (Academic Press, New York, 1983)

  8. A.S. Tomlin, M.J. Pilling, J.H. Merkin, J. Brindley, N. Burgess, A. Gough, Ind. Eng. Chem. Res. 34, 3749 (1995)

    Article  CAS  Google Scholar 

  9. YuM Zhorov, Kinetika promyshlennykh organicheskikh reaktsii: Spravochnoe izdanie (Kinetics of Industrial Organic Reactions: A Handbook) (Khimiya, Moscow, 1989)

    Google Scholar 

  10. T.N. Mukhina, N.L. Barabanov, S.E. Babash et al., Piroliz uglevodorodnogo syr’ya (Pyrolysis of Hydrocarbon Stocks) (Khimiya, Moscow, 1987)

    Google Scholar 

  11. D.L. Allara, D. Edelson, Int. J. Chem. Kinet. 7, 479 (1975)

    Article  CAS  Google Scholar 

  12. S.K. Layokun, D.H. Slater, Ind. Eng. Chem. Process Des. Dev. 18(2), 232 (1979)

    Article  CAS  Google Scholar 

  13. A. Dombi, P. Huhn, Int. J. Chem. Kinet. 18, 227 (1986)

    Article  CAS  Google Scholar 

  14. A. Dombi, I. Horvath, P. Huhn, Int. J. Chem. Kinet. 18, 255 (1986)

    Article  CAS  Google Scholar 

  15. V.N. Snytnikov, T.I. Mishchenko, VlN Snytnikov, S.E. Malykhin, V.I. Avdeev, V.N. Parmon, Res. Chem. Intermed. 38(3), 1133 (2012)

    Article  CAS  Google Scholar 

  16. V.N. Snytnikov, T.I. Mischenko, Vl.N. Snytnikov, O.P. Stoyanovskaya, V.N. Parmon, Kinet. Catal. 51(1), 10–17 (2010). doi:10.1134/S0023158410010039

    Google Scholar 

  17. V.A. Vshivkov, O.P. Sklyar, V.N. Snytnikov, I.G. Chernykh, Vychislitelnye Tekhnologii. 11(1), 35 (2006)

    Google Scholar 

  18. V.A. Vshivkov, O.P. Stoyanovskaya, Vychislitelnye Tekhnologii. 12(4), 42 (2007)

    Google Scholar 

  19. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential. Springer Series in Computational Mathematics (Springer, 2010), p. 614, ISBN:9783642052200

  20. C.K. Westbrook, W.J. Pitz, Combust. Sci. Technol. 37, 117 (1984)

    Article  CAS  Google Scholar 

  21. J.A. Manion, R.E. Huie, R.D. Levin, D.R. Burgess Jr., V.L. Orkin, W. Tsang, W.S. McGivern, J.W. Hudgens, V.D. Knyazev, D.B. Atkinson, E. Chai, A.M. Tereza, C.Y. Lin, T.C. Allison, W.G. Mallard, F. Westley, J.T. Herron, R.F. Hampson, D.H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National Institute of Standards and Technology, Gaithersburg. http://kinetics.nist.gov/. Retrieved September 12, 2011

  22. C.N. Hinshelwood, Proc. R. SOC. London Ser A 234, 301 (1956)

    Article  Google Scholar 

  23. M.C. Lin, K.J. Laidler, Can. J. Chem. 44, 2927 (1966)

    Article  CAS  Google Scholar 

  24. H.J. Curran, Int. J. Chem. Kinet. 38, 250 (2006)

    Article  CAS  Google Scholar 

  25. D.M. Matheu, J.M. Grenda, J. Phys. Chem. 109, 5343 (2005)

    Article  CAS  Google Scholar 

  26. S.P. Krishtal, A.M. Mebel, R.I. Kaiser, J. Phys. Chem. A 113, 11112 (2009)

    Article  CAS  Google Scholar 

  27. T. Koike, W.C. Gardlner, J. Phys. Chem. 84, 2005 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by RFBR 12-08-00871, Russian Federation President Grant for the Leading Scientific Schools for funding (NSh 524.2012.3), Project UNIHEAT of Skolkovo Foundation, Integration Project no. 130, Federal Program "Scientific and Scientifical-Pedagogical cadres innovation Russia for 2009-2013" of the Federal Agency For Science And Innovation, RFBR grant no. 12-07-00065. The authors are grateful to Dr S.E. Malykhin for scientific and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Mishchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snytnikov, V.N., Mishchenko, T.I., Snytnikov, V.N. et al. Autocatalytic dehydrogenation of propane. Res Chem Intermed 40, 345–356 (2014). https://doi.org/10.1007/s11164-012-0967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0967-1

Keywords

Navigation