Skip to main content
Log in

Electrochemical generation of hydrogen peroxide using carbon black-, carbon nanotube-, and carbon black/carbon nanotube-coated gas-diffusion cathodes: effect of operational parameters and decolorization study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the efficiency of the carbon black (CB)-polytetrafluoroethylene (PTFE)-, carbon nanotube (CNT)-PTFE-, and CB-CNT-PTFE-coated gas-diffusion cathode (GDC) for the electrochemical generation of H2O2 and its capability for degradation of organic pollutants. Results showed that the CB-CNT-PTFE-coated GDC was the most efficient cathode for the generation of H2O2, but the CB-PTFE-coated GDC can be chosen as an economical coating composite. The amount of H2O2 generated on the uncoated, PAC-PTFE-coated, CNT-PTFE-coated, CB-PTFE-coated, and CB-CNT-PTFE-coated GDC was 21.68, 58.45, 100.9, 112.3, and 123.5 μM, respectively, within a reaction time of 40 min. The effects of pH, current intensity, and electrolyte concentration on the generation of H2O2 were investigated. The electrochemical generation of H2O2 increased with increasing current intensity and electrolyte concentration. According to the results and from the economical point of view, the optimal pH, current intensity, and electrolyte concentration were 7.0, 150 mA, and 0.08 M, respectively. The obtained data showed that the electrochemical process equipped with CB-PTFE-coated GDC would be efficient for treating wastewater containing Acid Red 18 as a model organic pollutant. A decolorization efficiency of 95.35 % was achieved for an initial dye concentration of 10 mg/L at a reaction time of 70 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.R. Khataee, M. Safarpour, M. Zarei, S. Aber, J. Electroanal. Chem. 659, 63 (2011)

    Article  CAS  Google Scholar 

  2. M. Panizza, G. Cerisola, Electrochim. Acta 54, 876 (2008)

    Article  CAS  Google Scholar 

  3. C. Badellino, C.A. Rodrigues, R. Bertazzoli, J. Hazard. Mater. 137, 856 (2006)

    Article  CAS  Google Scholar 

  4. J.C. Forti, R.S. Rocha, M.R.V. Lanza, R. Bertazzoli, J. Electroanal. Chem. 601, 63 (2007)

    Article  CAS  Google Scholar 

  5. S. Irmak, H.I. Yavuz, O. Erbatur, Appl. Catal. B Environ. 63, 243 (2006)

    Article  CAS  Google Scholar 

  6. G. Zhang, S. Wang, S. Zhao, L. Fu, G. Chen, F. Yang, Appl. Catal. B Environ. 106, 370 (2011)

    Article  CAS  Google Scholar 

  7. F. Zhang, M. Li, W. Li, C. Feng, Y. Jin, X. Guo, J. Cui, Chem. Eng. J. 175, 349 (2011)

    Article  CAS  Google Scholar 

  8. A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou, Desalination 211, 72 (2007)

    Article  CAS  Google Scholar 

  9. M. Giomo, A. Buso, P. Fier, G. Sandonà, B. Boye, G. Farnia, Electrochim. Acta 54, 808 (2008)

    Article  CAS  Google Scholar 

  10. C. Antonio Pineda Arellano, S.S. Martínez, Int. J. Hydrogen Energy 32, 3163 (2007)

    Article  Google Scholar 

  11. A.R. Khataee, M. Zarei, L. Moradkhannejhad, Desalination 258, 112 (2010)

    Article  CAS  Google Scholar 

  12. H. Wang, J. Wang, Appl. Catal. B Environ. 89, 111 (2009)

    Article  CAS  Google Scholar 

  13. M. Zarei, D. Salari, A. Niaei, A. Khataee, Electrochim. Acta 54, 6651 (2009)

    Article  CAS  Google Scholar 

  14. W. Xu, P. Li, B. Dong, J. Environ. Sci. 22, 204 (2010)

    Article  CAS  Google Scholar 

  15. M.S. Saha, A. Denggerile, Y. Nishiki, T. Furuta, T. Ohsaka, Electrochem. Commun. 5, 445 (2003)

    Article  CAS  Google Scholar 

  16. M. Zarei, A. Niaei, D. Salari, A. Khataee, J. Hazard. Mater. 173, 544 (2010)

    Article  CAS  Google Scholar 

  17. A.R. Khataee, M. Zarei, Desalination 278, 117 (2011)

    Article  CAS  Google Scholar 

  18. K. Hanna, S. Chiron, M.A. Oturan, Water Res. 39, 2763 (2005)

    Article  CAS  Google Scholar 

  19. M. Zhou, Q. Yu, L. Lei, Dyes Pigments 77, 129 (2008)

    Article  CAS  Google Scholar 

  20. A.R. Khataee, M. Zarei, S.K. Asl, J. Electroanal. Chem. 648, 143 (2010)

    Article  CAS  Google Scholar 

  21. G. Wang, G. Sun, Q. Wang, S. Wang, H. Sun, Q. Xin, Int. J. Hydrogen Energy 35, 11245 (2010)

    Article  CAS  Google Scholar 

  22. M. Carmo, M. Linardi, J.G. Rocha Poco, Int. J. Hydrogen Energy 33, 6289 (2008)

    Article  CAS  Google Scholar 

  23. O. Nishikawa, K. Doyama, K. Miyatake, H. Uchida, M. Watanabe, Electrochim. Acta 50, 2719 (2005)

    Article  CAS  Google Scholar 

  24. E. Higuchi, K. Okamoto, K. Miyatake, H. Uchida, M. Watanabe, Res. Chem. Intermed. 32, 533 (2006)

    Article  CAS  Google Scholar 

  25. C.-H. Liu, T.-H. Ko, Y.-K. Liao, J. Power Sources 178, 80 (2008)

    Article  CAS  Google Scholar 

  26. A. Özcan, Y. Şahin, A. Savaş Koparal, M.A. Oturan, J. Electroanal. Chem. 616, 71 (2008)

    Article  Google Scholar 

  27. F. Xu, T. Song, Y. Xu, Y. Chen, S. Zhu, S. Shen, J. Rare Earths 27, 128 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Tarbiat Modares University for their financial and instrumental supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rezaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltani, R.D.C., Rezaee, A., Khataee, A.R. et al. Electrochemical generation of hydrogen peroxide using carbon black-, carbon nanotube-, and carbon black/carbon nanotube-coated gas-diffusion cathodes: effect of operational parameters and decolorization study. Res Chem Intermed 39, 4277–4286 (2013). https://doi.org/10.1007/s11164-012-0944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0944-8

Keywords

Navigation