Skip to main content
Log in

A novel concept for the improvement of the Ni–Mo/Al2O3-based nanocatalyst system: design and analysis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A new Ni–Mo/Al2O3-based nano catalyst composition was developed and manufactured by a proprietary catalyst preparation technology for diesel hydrotreatment. The nanocatalyst has been performing commercially since September 2011, consistently producing ultra low-sulfur diesel of Euro-IV/V standards from a feedstock containing 1.75 wt% sulfur. In addition to lowering sulfur content, the catalyst also enhances cetane number and reduces boiling end-point to obtain diesel with better quality. The nanocatalyst was characterized by X-ray photoelectron spectroscopy to ascertain the electronic state of metal species. The morphological characterization of the nanocatalyst carried out by TEM revealed the presence of nano-sized MoS2 slab structures. The performance of the nanocatalyst is mainly attributed to MoS2 slabs with increased stacking which in turn are generated from the customized metal-sulfide precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Farsi, S. Ghader, A. Moradi, S.S. Mansouri, V. Shadravan, J. Nat. Gas Chem. 20, 325 (2011)

    Article  CAS  Google Scholar 

  2. A. Farsi, A. Moradi, S. Ghader, V. Shadravan, Chin. J. Chem. Phy. 24, 70 (2011)

    Article  CAS  Google Scholar 

  3. A. Farsi, A. Moradi, S. Ghader, V. Shadravan, Z.A. Manan, J. Natu, Gas. Sc. Eng. 5, 724 (2010)

    Google Scholar 

  4. A. Farsi, V. Shadravan, S.S. Mansouri, G. Zahedi, Z.A. Manan, Int. J. Energy Res. (2011) (article in press). doi:10.1002/er.1881.

  5. A. Farsi, S.S. Mansouri, Arab. J. Chem. (2011) (article in press). doi:10.1016/j.arabjc.2011.08.001

  6. M.V. Landau, Catal. Today 36, 3213 (1997)

    Google Scholar 

  7. D.D. Whitehurst, T. Isoda, I. Mochida, Adv. Catal. 42, 345 (1998)

    Article  CAS  Google Scholar 

  8. T. Kabe, A. Ishihara, W. Qian, Hydrodesulfurization and hydrodenitrogenation (Kodansha Scientific, Tokyo, 1999)

    Google Scholar 

  9. C. Marcilly, J. Catal. 216, 47 (2003)

    Article  CAS  Google Scholar 

  10. A.C. Pullikottil, M. Santra, R.P. Verma, US Patent 6 855 653 to Indian Oil Corporation (2005)

  11. T.C. Ho, J. Catal. 219, 442 (2003)

    Article  CAS  Google Scholar 

  12. H. Topsoe, B.S. Clausen, Massoth, hydrotreating catalysts: science and technology (Springer-Verlag, Berlin, 1996), p. 310

    Google Scholar 

  13. M. Sun, D. Nicosia, R. Prins, Catal. Today 86, 173 (2003)

    Article  CAS  Google Scholar 

  14. N. Koizumi, M. Shingu, K. Hata, Y. Murata, H. Itou, M. Yamada, Prepr. Pap. Am. Chem. Soc. Div. Pet. Chem. 49(3), 292 (2004)

    CAS  Google Scholar 

  15. C. Song, K.M. Reddy, Appl. Catal. A Gen. 176, 1 (1999)

    Article  CAS  Google Scholar 

  16. U.T. Turaga, X. Ma, C. Song, Catal. Today 86, 265 (2003)

    Article  CAS  Google Scholar 

  17. D. Nicosia, R. Prins, J. Catal. 229, 424 (2005)

    Article  CAS  Google Scholar 

  18. M. Yamada, Prepr. Pap. Am. Chem. Soc. Div. Pet. Chem. 49(3), 287 (2004)

    CAS  Google Scholar 

  19. S.K. Maity, J. Ancheyta, L. Soberanis, F. Alonso, Appl. Catal. A Gen. 253, 125 (2003)

    Article  CAS  Google Scholar 

  20. C. Pophal, F. Kameda, K. Hoshino, S. Yoshinaka, S. Segawa, Catal. Today 39, 21 (1997)

    Article  CAS  Google Scholar 

  21. C.S. Fadley, S.B.M. Hagstrom, M.P. Klein, D.A. Shirley, Chem. Phys. 48, 3779 (1968)

    CAS  Google Scholar 

  22. S.P.A. Louwers, R. Prins, J. Catal. 133, 94 (1992)

    Article  CAS  Google Scholar 

  23. D. Ferdous, A.K. Dalai, J. Adjaye, L. Kotlyar, Appl. Catal. A Gen. 294, 80 (2005)

    Article  CAS  Google Scholar 

  24. E. Payen, R. Hubaut, S. Kasztelan, O. Poulet, J. Grimblot, J. Catal. 147, 123 (1994)

    Article  CAS  Google Scholar 

  25. J.M.E. Hensen, J.P. Kooyman, V.D.Y. Meer, V.D.M.A. Kraan, H.J.V. De Beer, A.R.J. Van Veen, A.R. Van Santen, J. Catal. 199, 224 (2001)

    Article  CAS  Google Scholar 

  26. S. Eijsbouts, A.A. Battiston, G.C. van Leerdam, Catal. Today 130, 361 (2008)

    Article  CAS  Google Scholar 

  27. H. Topsoe, R.G. Egeberg, K.G. Knudsen, Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 49, 568 (2004)

    CAS  Google Scholar 

  28. M.R. Gray, AOSTRA J. Res. 6, 185 (1990)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Zainuddin Abdul Manan and Dr. Gholamreza Zahedi from Universiti Teknologi Malaysia (UTM) for their valuable comments and critical discussions throughout the authors’ research. The authors would also like to acknowledge Dr. Mohammad R. Hajaligol from Philip Morris USA, Research Center and Prof. Dr. Leon Lefferts from University of Twente for their fruitful discussions in course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farsi, A., Mansouri, S.S. A novel concept for the improvement of the Ni–Mo/Al2O3-based nanocatalyst system: design and analysis. Res Chem Intermed 38, 1871–1879 (2012). https://doi.org/10.1007/s11164-012-0510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0510-4

Keywords

Navigation