Skip to main content
Log in

Comparative analysis of feeding habits and dietary niche breadth in skates: the importance of body size, snout length, and depth

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Skates (Elasmobranchii, Rajiformes) are a morphologically conservative group of bentophagous chondrichthyan fishes with a high degree of endemism, that occur on marine soft bottoms. Subtle morphological aspects and bathymetric distribution are traits that vary among skate species that could have implications for their feeding ecology. We test how body size, snout length and bathymetric distribution influence the feeding habits and dietary niche breadth in skates using data on 71 species taken from the literature. We hypothesized that snout length has an effect on diet composition. We also hypothesized that dietary niche breadth increases with increasing depth range and decreases with increasing body size of skate species. Generalized additive models for location scale and shape were fitted with taxonomic level (genera nested within family) included as a random effect term in each model. A model selection approach to test the level of support for alternative models was applied. We found that skate species that forage on large prey have the largest body size and skate species with the smallest body size prey on small and medium-sized invertebrates. The results indicated that body size has an effect on feeding habits of skates, whereas an effect of snout length was not supported. Bathymetric variables have an effect on the diet of skates. Our prediction that dietary niche breadth increases with increasing depth range and decreases with increasing body size of skate species was supported in part: in a first phase the relationship between dietary niche breadth and body size is positive, then in a second phase, including species larger than 1000 mm total length, the relationship become negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbini SA, Lucifora LO (2016) Big fish (and a smallish skate) eat small fish: diet variation and trophic level of Sympterygia acuta, a medium-sized skate high in the food web. Mar Ecol 37:283–293

    Article  Google Scholar 

  • Begon ME, Harper JL, Townsend CR (2006) Ecology. From individuals to ecosystems, 4th edn. Blackwell Science, Oxford

    Google Scholar 

  • Belleggia M, Andrada N, Paglieri S, Cortés F, Massa AM, Figueroa DE, Bremec C (2016) Trophic ecology of yellownose skate Zearaja chilensis, a top predator in the south-western Atlantic Ocean. J Fish Biol 88:1070–1087

    Article  PubMed  CAS  Google Scholar 

  • Bizzarro JJ, Robinson HJ, Rinewalt CS, Ebert DA (2007) Comparative feeding ecology of four sympatric skate species off central California, USA. Environ Biol Fish 80:197–220

    Article  Google Scholar 

  • Boyles JG, Storm JJ (2007) The perils of picky eating: dietary breadth is related to extinction risk in insectivorous bats. PLoS ONE 7:e672

    Article  Google Scholar 

  • Brandl R, Kristín A, Leisler B (1994) Dietary niche breadth in a local community of passerine birds: an analysis using phylogenetic contrasts. Oecologia 98:109–116

    Article  PubMed  CAS  Google Scholar 

  • Brändle M, Prinzing A, Pfeifer R, Brandl R (2002) Dietary niche breadth for Central European birds: correlations with species-specific traits. Evol Ecol Res 4:643–657

    Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Cliff G, Dudley SFJ, Davis B (1989) Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark Carcharodon carcharias (Linnaeus). S Afr J Mar Sci 8:131–144

    Article  Google Scholar 

  • Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717

    Article  Google Scholar 

  • Costa GC (2009) Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology 90:2014–2019

    Article  PubMed  Google Scholar 

  • Costa GC, Vitt LJ, Pianka ER, Mesquita DO, Colli GR (2008) Optimal foraging constraints macroecological patterns: body size and dietary niche breadth in lizards. Global Ecol Biogeogr 17:570–677

    Article  Google Scholar 

  • Dean MN, Wilga CD, Summers AP (2005) Eating without hands or tongue: specialization, elaboration and the evolution of prey processing mechanisms in cartilaginous fishes. Biol Lett 1:357–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz M (1994) Variability in seed size selection by granivorous passerines: effects of bird size, bird size variability, and ecological plasticity. Oecologia 99:1–6

    Article  PubMed  Google Scholar 

  • Dulvy NK, Reynolds JD (2002) Predicting extinction in skates. Conserv Biol 16:440–450

    Article  Google Scholar 

  • Dulvy NK, Fowler SL, Musick JA et al (2014) Extinction risk and conservation of the world’s sharks and rays. ELife 3:e00590

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebert DA, Bizzarro JJ (2007) Standardized diet compositions and trophic levels of skates (Chondrichthyes, Rajiformes, Rajoidei). Environ Biol Fish 80:221–237

    Article  Google Scholar 

  • Ebert DA, Compagno LJV (2007) Biodiversity and systematics of skates (Chondrichthyes: Rajiformes: Rajoidei). Environ Biol Fish 80:111–124

    Article  Google Scholar 

  • Fitzgerald DB, Winemiller KO, Sabaj Perez MH, Sousa LM (2017) Using trophic structure to reveal patterns of trait-based community assembly across niche dimensions. Funct Ecol 31:1135–1144

    Article  Google Scholar 

  • Forman JS, Dunn MR (2012) Diet and scavenging habits of the smooth skate Dipturus innominatus. J Fish Biol 80:1546–1562

    Article  PubMed  CAS  Google Scholar 

  • Franklin AB, Sheik TM, Anderson DR, Burnham KP (2001) Statistical model selection: an alternative to null hypothesis testing. In: Shenk TM, Franklin AM (eds) Modeling in natural resources management: development, interpretation, and application. Island Press, Washington, pp 75–90

    Google Scholar 

  • Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance range size relationships: an appraisal of mechanisms. J Anim Ecol 66:579–601

    Article  Google Scholar 

  • Goodwin NB, Dulvy NK, Reynolds JD (2005) Macroecology of live-bearing in fishes: latitudinal and depth range comparisons with egg-laying relatives. Oikos 110:209–218

    Article  Google Scholar 

  • Hutchings JA, Myers RA, García VB, Lucifora LO, Kuparinen A (2012) Life-history correlates of extinction risk and recovery potential. Ecol Appl 22:1061–1067

    Article  PubMed  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Kadri H, Marouani S, Bradai NM, Bouaïn A (2014) Food habits of the brown ray Raja miraletus (Chondrichthyes: Rajidae) from the Gulf of Gabès (Tunisia). Mar Biol Res 10:426–434

    Article  Google Scholar 

  • Kajiura SM (2001) Head morphology and electrosensory pore distribution of carcharhinid and sphyrnid sharks. Environ Biol Fish 61:125–133

    Article  Google Scholar 

  • Kajiura SM, Holland KN (2002) Electroreception in juvenile scalloped hammerhead and sandbar shark. J Exp Biol 205:3609–3621

    PubMed  Google Scholar 

  • Karpouzi VS, Stergiou KI (2003) The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. J Fish Biol 62:1353–1365

    Article  Google Scholar 

  • Klaczko J, Sherratt E, Setz EZF (2016) Are diet preferences associated to skulls shape diversification in Xenodontidae snakes? PLoS ONE 11:e0148375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koen Alonso M, Crespo EA, Gracía NA, Pedraza SN, Mariotti PA, Berón Vega B, Mora NJ (2001) Food habits of Dipturus chilensis (Pisces: Rajidae) off Patagonia, Argentina. ICES J Mar Sci 58:288–297

    Article  Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper Collins Publishers, New York

    Google Scholar 

  • Kyne PM, Courtney AJ, Bennett MB (2008) Aspects of reproduction and diet of the Australian endemic skate Dipturus polyommata (Ogilby) (Elasmobranchii: Rajidae), by-catch of a commercial prawn trawl fishery. J Fish Biol 72:61–77

    Article  Google Scholar 

  • Last PR, White WT, Pogonoski JJ, Gledhill DC (2008) New Australian skates (Batoidea: Rajoidei)-background and methodology. In: Last PR, White WT, Pogonoski JJ, Gledhill DC (eds) Descriptions of New Australian skates Batoidea: Rajoidei. CSIRO, Hobart

    Google Scholar 

  • Last P, White W, de Carvalho M, Séret B, Stehmann M, Naylor G (2016) Rays of the world. CSIRO Publishing, Clayton

    Google Scholar 

  • Layman CA, Winemiller KO, Arrington DA, Jepsen DB (2005) Body size and trophic position in a diverse tropical food web. Ecology 86:2530–2535

    Article  Google Scholar 

  • López-García J, Navia AF, Mejía-Falla PA, Rubio EA (2012) Feeding habits and trophic ecology of Dasyatis longa (Elasmobranchii: Myliobatiformes): sexual, temporal and ontogenetic shifts. J Fish Biol 80:1563–1579

    Article  PubMed  Google Scholar 

  • Lucifora LO, Valero JL, Bremec CS, Lasta ML (2000) Feeding habits and prey selection by the skate Dipturus chilensis (Elasmobranchii: Rajidae) from the south-western Atlantic. J Mar Biol Assoc UK 80:953–954

    Article  Google Scholar 

  • Motta PJ (1988) Functional morphology of the feeding apparatus of ten species of Pacific butterflyfishes (Perciformes, Chaetodontidae): an ecomorphological approach. Environ Biol Fish 22:39–67

    Article  Google Scholar 

  • Motta PJ (2004) Prey capture behavior and feeding mechanics of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 165–202

    Chapter  Google Scholar 

  • Mulas A, Bellodi A, Cannas R, Cau A, Cuccu D, Marongiu MF, Porcu C, Follesa MC (2015) Diet and feeding behaviour of longnosed skate Dipturus oxyrinchus. J Fish Biol 86:121–138

    Article  PubMed  CAS  Google Scholar 

  • Orlov AM (1998) The diets and feeding habits of some deep-water benthic skates (Rajidae) in the Pacific waters off the Northern Kuril Islands and Southeastern Kamchatka. Alaska Fish Res Bull 5:1–17

    Google Scholar 

  • Pyron M (1999) Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. J Biogeogr 26:549–558

    Article  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Richards SA (2005) Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology 86:2805–2814

    Article  Google Scholar 

  • Robinson HJ, Cailliet GM, Ebert DA (2007) Food habits of the longnose skate, Raja rhina (Jordan and Gilbert, 1880), in central California waters. Environ Biol Fish 80:165–179

    Article  Google Scholar 

  • Scharf FS, Juanes F, Rountree RA (2000) Predator size – prey size relationships of marine fish predators: interespecific variation and effects of ontogeny and body size trophic-niche breadth. Mar Ecol Prog Ser 208:229–248

    Article  Google Scholar 

  • Smith KF, Brown JH (2002) Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth. Global Ecol Biogeogr 11:313–322

    Article  Google Scholar 

  • Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46

    Article  Google Scholar 

  • Stasinopoulos DM, Rigby RA, Akantziliotou C (2008) Instructions on how to use the GAMLSS package in R. Second edition. Technical Report 01/08, STORM Research Centre, Metropolitan University, London

  • Symonds ME, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21

    Article  Google Scholar 

  • Tucker MA, Rogers TL (2014) Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals. P Roy Soc B 281:20142103

    Article  Google Scholar 

  • Vögler R, Milessi AC, Quiñones RA (2003) Trophic ecology of Squatina guggenheim on the continental shelf off Uruguay and northern Argentina. J Fish Biol 62:1254–1267

    Article  Google Scholar 

  • Wasserman SS, Mitter C (1978) The relationship of body size to breadth of diet in some Lepidoptera. Ecol Entomol 3:155–160

    Article  Google Scholar 

  • Wetherbee BM, Cortés E (2004) Food consumption and feeding habits. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 225–246

    Chapter  Google Scholar 

  • Wilga CD, Motta PJ, Sanford CP (2007) Evolution and ecology of feeding in elasmobranchs. Integr Comp Biol 47:55–69

    Article  PubMed  Google Scholar 

  • Wilga CD, Maia A, Nauwelaerts S, Lauder GV (2012) Prey handling using whole-body fluid dynamics in batoids. Zoology 115:47–57

    Article  PubMed  Google Scholar 

  • Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergence evolution, and periodic tables of niches. Ecol Lett 18:737–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Witmann JD, Roy K (2009) Marine macroecology. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Wueringer EB, Squire Jnr L, Kajiura SM, Tibbets IR, Hart NS (2012) Electric field detection in sawfish and shovelnose rays. Plos ONE 7:e41605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nicholas K. Dulvy and Daniel Barrios-O’Neill for their suggestions and constructive comments as referees. This study was supported by Fondo para la Investigación Científica y Tecnológica (FONCyT) PICT 2014-0819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago A. Barbini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbini, S.A., Sabadin, D.E. & Lucifora, L.O. Comparative analysis of feeding habits and dietary niche breadth in skates: the importance of body size, snout length, and depth. Rev Fish Biol Fisheries 28, 625–636 (2018). https://doi.org/10.1007/s11160-018-9522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-018-9522-5

Keywords

Navigation