Skip to main content
Log in

Flatfish (Pleuronectiformes) chromatic biology

  • Review
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The following aspects of flatfish skin coloration are reviewed. (1) The variety of chromatophores which contribute to the complex integumentary patterns; their relative sizes and numerical distribution. (2) Interspecific variations and intraspecific changes in skin patterns. (3) Ambicolouration and hypomelanosis and their economic consequences. Discussion of nutrition, illumination, stress, endocrine and paracrine factors which may influence both these phenomena, as well as the normal pattern morphology, including putative melanogenesis stimulating and inhibitory factors within the integument. (4) Cryptic responses to substrate texture and colour, as well as to stressors, involving chromatophore morphological and physiological chromatic interaction. (5) Regulation of pattern changes; the simultaneous production by a single neurone type (adrenergic) of both paling and darkening in different pattern areas through variations in “adrenoceptor transition ranges”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott FS (1973) Endocrine regulation of pigmentation in fish. Am Zool 13:885–894

    CAS  Google Scholar 

  • Ahlquist RR (1948) A study of adrenergic receptors. Am J Physiol 153:586–600

    CAS  PubMed  Google Scholar 

  • Ahmad E (1979) The integumentary chromatophore patterns in the plaice Pleuronectes platessa L., with special reference to their responses towards variegated backgrounds, Chap. 4. Ph.D. Thesis, London University, pp 108–239

  • Amiya N, Amano M, Takahashi A et al (2005) Effects of tank color on melanin-concentrating hormone levels in the brain, pituitary gland and plasma of the barfin flounder as revealed by a newly developed time-resolved fluoroimmunoassay. Gen Comp Endocrinol 143:251–256. doi:10.1016/j.ygcen.2005.04.012

    CAS  PubMed  Google Scholar 

  • Anderson JC, Baddeley RJ, Osorio D et al (2003) Modular organization of adaptive colouration in flounder and cuttlefish revealed by independent component-analysis. Comput Neural Syst 14:321–333. doi:10.1088/0954-898X/14/2/308

    CAS  Google Scholar 

  • Andersson RGG, Karlsson JO, Grundström N (1984) Adrenergic nerves and the alpha2-adrenoceptor system regulating melanosome aggregation within fish melanophores. Acta Physiol Scand 121:173–179. doi:10.1111/j.1748-1716.1984.tb07444.x

    CAS  PubMed  Google Scholar 

  • Babák EE (1910) Zur chromatischen Hautfunktion der Amphibien. Pflüg Arch ges Physiol 131:82–118

    Google Scholar 

  • Bagnara JT, Hadley ME (1973) Chromatophores and color change, the comparative physiology of animal pigmentation. Prentice Hall, Englewood Cliffs, pp 31–33

    Google Scholar 

  • Bagnara JT, Fukuzawa T, Johnson WC et al (1992) Integumental pigmentary factors of lower vertebrates. Models for human hypo- and hypermelanoses. Pigment Cell Res Suppl 2:254–261

    CAS  Google Scholar 

  • Baker BI, Wilson JF, Bowley TJ (1984) Changes in pituitary and plasma levels of MSH in teleosts during physiological colour change. Gen Comp Endocrinol 55:142–149. doi:10.1016/0016-6480(84)90138-2

    CAS  PubMed  Google Scholar 

  • Berendzen PB, Dimmick WW (2002) Phylogenetic relationships of Pleuronectiformes based on molecular evidence. Copeia 2002:642–652. doi:10.1643/0045-8511(2002)002[0642:PROPBO]2.0.CO;2

    Google Scholar 

  • Bolker JA (2000) Pigmentation development in hatchery-reared summer flounder. Abstracts. Flatfish Biology Conference, Mystic, 5–6 December 2000, p 6

  • Bolker JA, Hakala TF, Quist JE (2005) Pigmentation development, defects, and patterning in summer flounder (Paralichthys dentatus). Zoology 108:183–193. doi:10.1016/j.zool.2005.05.001

    PubMed  Google Scholar 

  • Burton D (1964) Spinal pigmentomotor tract of the minnow, Phoxinus phoxinus (L). Nature 201:1149. doi:10.1038/2011149a0

    CAS  PubMed  Google Scholar 

  • Burton D (1966) Effect of spinal lesions on the colour change of the minnow (Phoxinus phoxinus L.). Nature 211:992–993. doi:10.1038/211992b0

    CAS  PubMed  Google Scholar 

  • Burton D (1969) The colour changes of the minnow, Phoxinus phoxinus, with particular reference to the effect of spinal lesions. J Zool 157:169–185

    Google Scholar 

  • Burton D (1975) The integumentary melanophore patterns of two teleost species Gasterosteus aculeatus and Pseudopleuronectes americanus. Can J Zool 53:507–515. doi:10.1139/z75-065

    CAS  PubMed  Google Scholar 

  • Burton D (1978) Melanophore distribution within the integumentary tissues of 2 teleost species Pseudopleuronectes americanus and Gasterosteus aculeatus form leiurus. Can J Zool 56:526–535. doi:10.1139/z78-076

    Google Scholar 

  • Burton D (1979) Differential chromatic activity of melanophores in integumentary patterns of winter flounder (Pseudopleuronectes americanus Walbaum). Can J Zool 57:650–657. doi:10.1139/z79-077

    Google Scholar 

  • Burton D (1980) A cellular analysis of chromatophore patterning in winter flounder (Pseudopleuronectes americanus, Walbaum). Comp Biochem Physiol 67A:453–457. doi:10.1016/S0300-9629(80)80022-3

    Google Scholar 

  • Burton D (1981) Physiological responses of melanophores and xanthophores of hypophysectomized and spinal winter flounder, Pseudopleuronectes americanus, Walbaum. Proc R Soc Lond 213B:217–231. doi:10.1098/rspb.1981.0063

    Google Scholar 

  • Burton D (1985) Differential in vivo sensitivity of melanophores and xanthophores to catecholamines in winter flounder (Pseudopleuronectes americanus, Walbaum) integumentary patterns. J Exp Biol 114:649–659

    CAS  Google Scholar 

  • Burton D (1988) Melanophore comparisons in different forms of ambicoloration in the flatfish Pseudopleuronectes americanus and Reinhardtius hippoglossoides. J Zool (Lond) 214:353–360. doi:10.1111/j.1469-7998.1988.tb04728.x

    Google Scholar 

  • Burton D (1993) The effects of background colouration and α-MSH treatment on melanophore frequency in winter flounder, Pleuronectes americanus. J Comp Physiol [A] 173:329–333. doi:10.1007/BF00212697

    Google Scholar 

  • Burton D (2005) In vitro pattern-related effects of forskolin on melanophore adrenoceptor-mediated responses of winter flounder. J Fish Biol 66:230–241. doi:10.1111/j.0022-1112.2005.00600.x

    CAS  Google Scholar 

  • Burton D (2007) Melanophore β-adrenoceptors in patterning in a flatfish, Pseudopleuronectes americanus. Can J Zool 85:695–702. doi:10.1139/Z07-039

    CAS  Google Scholar 

  • Burton D (2008) A physiological interpretation of pattern changes in flatfish. J Fish Biol 73:639–649. doi:10.1111/j.1095-8649.2008.01960.x

    Google Scholar 

  • Burton D, Everard B (1989) An effect of in vivo chromatic adaptation on melanophore in vitro sensitivity. Comp Biochem Physiol C 93:313–316

    Google Scholar 

  • Burton D, Fletcher GL (1983) Seasonal changes in the epidermis of the winter flounder, Pseudopleuronectes americanus. J Mar Biol Ass 63:273–287

    Google Scholar 

  • Burton D, O’Driscoll MP (1992) ‘Facilitation’ of melanophore responses in winter flounder Pseudopleuronectes americanus. J Exp Biol 168:289–299

    Google Scholar 

  • Burton D, Snow A (1993) An in vivo and in vitro comparison of differential melanophore responsiveness in flatfish integumentary color patterns. Zool Sci 10:577–585

    Google Scholar 

  • Burton D, Vokey JE (2000a) The relative in vitro responsiveness of melanophores of winter flounder to α-MSH and MCH. J Fish Biol 56:1192–1200

    Google Scholar 

  • Burton D, Vokey JE (2000b) α1- and α2-adrenoceptor mediation in melanosome aggregation in cryptic patterning of Pleuronectes americanus. Comp Biochem Physiol 125A:359–365

    CAS  Google Scholar 

  • Burton D, Vokey J, Mayo D (1995) Adrenoceptors in cryptic patterning of a flatfish, Pleuronectes americanus. Proc R Soc Lond B Biol Sci 261:181–186. doi:10.1098/rspb.1995.0134

    CAS  Google Scholar 

  • Burton D, Mayo D, Vokey JE (2000) Melanophore receptor diversity as a component of flatfish patterning physiology. Abstracts. Flatfish Biology Conference, Mystic, 5–6 December 2000, p 6

  • Chaves PT, Gomes ID, Ferreira EA et al (2002) Ambicoloration in the flatfish Symphurus tessellates (Cynoglossidae) from southern Brazil. Acta Biol Paranaense Curitiba 31:59–63

    Google Scholar 

  • Cooper JA, Chapleau F (1998) Morphology and interrelationships of the family Pleuronectidae (Pleuronectiformes) with a revised classification. Fish Bull (Wash DC) 69:686–726

    Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen, London, pp 20–34

    Google Scholar 

  • Cunningham JT, MacMunn CA (1893) On the coloration of fishes, especially of Pleuronectidae. Philos Trans R Soc Lond 184B:765–812. doi:10.1098/rstb.1893.0010

    Google Scholar 

  • de Groot SJ, Norde R, Verheijen FJ (1969) Retinal stimulation and pattern formation in the common sole, Solea solea (L.) (Pisces: Soleidae). Neth J Sea Res 4:339–349. doi:10.1016/0077-7579(69)90004-0

    Google Scholar 

  • Diaz de Astarloa JM (1995) Ambicoloration in two flounder Paralichthys patagonicus and Xystreuris rasile. J Fish Biol 47:168–170. doi:10.1006/jfbi.1995.0121

    Google Scholar 

  • Fernando MM (1989) Monoaminergic nerves in the skin of plaice, Pleuronectes platessa (L). Comp Biochem Physiol 92C:1–4

    Google Scholar 

  • Fernando MM, Grove DJ (1974a) Melanophore aggregation in the plaice (Pleuronectes platessa L.). I. Changes in in vivo sensitivity to sympathomimetic amines. Comp Biochem Physiol A 48:719–721

    Google Scholar 

  • Fernando MM, Grove DJ (1974b) Melanophore aggregation in the plaice (Pleuronectes platessa L). II. In vitro effects of adrenergic drugs. Comp Biochem Physiol A 48:723–732. doi:10.1016/0300-9629(74)90615-X

    CAS  PubMed  Google Scholar 

  • Fingerman M (1963) The control of chromatophores. Pergamon Press, Oxford, pp. 8–10

    Google Scholar 

  • Fox SI (2002) Human physiology, 7th edn. McGraw Hill, New York, p 473

    Google Scholar 

  • Fox HM, Vevers G (1960) The nature of animal colours. Sidgwick & Jackson, London, p 39

    Google Scholar 

  • Fujii R (1993a) Coloration and chromatophores. In: Evans DH (ed) The physiology of fish. CRC Press, Boca Raton, pp 535–562

    Google Scholar 

  • Fujii R (1993b) Cytophysiology of fish chromatophores. Int Rev Cytol 143:191–255. doi:10.1016/S0074-7696(08)61876-8

    CAS  Google Scholar 

  • Fujii R (2000) The regulation of motile activity in fish chromatophores. Pigment Cell Res 13:300–319. doi:10.1034/j.1600-0749.2000.130502.x

    CAS  PubMed  Google Scholar 

  • Fujii R, Miyashita Y (1975) Receptor mechanisms in fish chromatophores. I. Alpha nature of adrenoceptors mediating melanosome aggregation in guppy melanophores. Comp Biochem Physiol 29:109–124. doi:10.1016/0010-406X(69)91728-9

    Google Scholar 

  • Fujii R, Oshima N (1986) Control of chromatophore movements in teleost fishes. Zool Sci 3:13–47

    CAS  Google Scholar 

  • Fujii R, Wakatabi H, Oshima N (1991) Inositol, 1, 4, 5-trisphosphate signals the motile response of fish chromatophores—I. Aggregation of pigment in the tilapia melanophore. J Exp Zool 259:9–17. doi:10.1002/jez.1402590103

    CAS  Google Scholar 

  • Gozdowska M, Sokolowska E, Kulczykowska E (2003) Plasma Ca2+ concentration limits melatonin night production in two fish species. J Fish Biol 62:405–1413. doi:10.1046/j.1095-8649.2003.00126.x

    Google Scholar 

  • Gray EG (1955) An asymmetrical response of teleost melanophores. Nature 175:642–643. doi:10.1038/175642b0

    Google Scholar 

  • Gray EG (1956) Control of the melanophores of the minnow (Phoxinus phoxinus L). J Exp Biol 33:448–659

    Google Scholar 

  • Grove DJ (1994) Chromatophores. In: Nilsson S, Holmgren S (eds) Comparative physiology and evolution of the autonomic nervous system. Chur, Harwood, pp 331–352

    Google Scholar 

  • Healey EG (1948) The colour change of the minnow (Phoxinus laevis Ag.). Bull Anim Behav 6:5–15

    Google Scholar 

  • Healey EG (1951) The colour change of the minnow (Phoxinux laevis Ag.). I. Effects of spinal sections between vertebrae 5 and 12 on the response of the melanophores. J Exp Biol 28:297–319

    Google Scholar 

  • Healey EG (1999) The skin pattern of young plaice and its rapid modification in response to graded changes in background tint and pattern. J Fish Biol 55:937–971. doi:10.1111/j.1095-8649.1999.tb00732.x

    Google Scholar 

  • Healey EG, Ross DM (1966) The effects of drugs on the background colour responses of the minnow Phoxinus phoxinus (L). Comp Biochem Physiol 19:545–580. doi:10.1016/0010-406X(66)90039-9

    CAS  PubMed  Google Scholar 

  • Hewer HR (1926) Studies on the colour changes of fish. II. An analysis of the colour patterns of the dab. III. The action of nicotine and adrenalin in the dab. IV. The action of caffeine in the dab and a theory of the control of colour changes in fish. Philos Trans R Soc Lond B 215:177–200. doi:10.1098/rstb.1927.0003

    Google Scholar 

  • Hewer HR (1931) Studies on the colour changes in fish. V. The colour patterns in certain flatfish and their relation to the environment. J Linn Soc Zool 37:493–513. doi:10.1111/j.1096-3642.1931.tb02363.x

    Google Scholar 

  • Hogben LT (1924) The pigmentary effector system. Oliver & Boyd, Edinburgh, pp 93–120

    Google Scholar 

  • Hogben LT, Slome D (1931) The pigmentary system. VI. The dual character of the endocrine coordination in amphibian colour change. Proc R Soc Lond B 108:10–53

    CAS  Google Scholar 

  • Hoshino K (2001) Monophyly of the Citharidae (Pleuronectoidei: Pleuronectiformes: Teleostei) with consideration of pleuronectoid phylogeny. Ichthyol Res 48:391–404. doi:10.1007/s10228-001-8163-0

    Google Scholar 

  • Iwata KS, Fukuda H (1973) Central control of colour changes in fish. In: Chavin W (ed) Responses of fish to environmental changes. Springfield, Thomas, pp 316–341

    Google Scholar 

  • Kelman EJ, Tiptus P, Osorio D (2006) Juvenile plaice (Pleuronectes platessa) produce camouflage by flexibly combining two separate patterns. J Exp Biol 209:3288–3292. doi:10.1242/jeb.02380

    PubMed  Google Scholar 

  • Khokhar R (1971) The chromatic physiology of the catfish Ictalurus melas (Rafinesque). I. The melanophore responses of intact and eyeless fish. Comp Biochem Physiol A 39:531–543. doi:10.1016/0300-9629(71)90316-1

    CAS  PubMed  Google Scholar 

  • Kulczykowska E, Warne JM, Balment RJ (2001) Day–night variations in plasma melatonin and arginine vasotocin concentrations in chronically cannulated flounder (Platichthys flesus). Comp Biochem Physiol A 130:827–834. doi:10.1016/S1095-6433(01)00444-5

    CAS  Google Scholar 

  • Kuntz A (1915) The histological basis of adaptive shades and colour in the flounder Paralichthys albiguttus. Bull US Bur Fish 35:1–29

    Google Scholar 

  • Lanzing WJR (1977) Reassessment of chromatophore pattern regulation in two species of flatfish (Scophthalmus maximus and Pleuronectes platessa). Neth J Sea Res 11:213–222. doi:10.1016/0077-7579(77)90008-4

    Google Scholar 

  • Lanzing WJR, Bower CC (1974) Development of color patterns in relation to behavior in Tilapia mossambica. J Fish Biol 6:29–41. doi:10.1111/j.1095-8649.1974.tb04519.x

    Google Scholar 

  • Macieria RM, Joyeax JC, Chagas LP (2006) Ambicoloration and morphological aberration in the sole Achirus declivis (Pleuronectiformes: Achiridae) and two other cases of color abnormalities in achirid soles from southeastern Brazil. Neotrop Ichthyol 4:287–290

    Google Scholar 

  • Mast SO (1914) Changes in shade color and pattern in fishes, and their bearing on the problems of adapting and behaviour, with especial reference to the flounders Paralichthys, and Ancylopsetta. Bull US Bur Fish 34:177–238

    Google Scholar 

  • Matsumoto J, Seikai T (1992) Asymmetric pigmentation and pigment disorders in pleuronectiformes (Flounder). Pigment Cell Res Suppl 2:275–282

    Google Scholar 

  • Max M, Menaker M (1992) Regulation of melatonin production by light, darkness and temperature in the trout pineal. J Comp Physiol [A] 170:479–489. doi:10.1007/BF00191463

    CAS  Google Scholar 

  • Mayo DJ, Burton D (1998a) The in vitro physiology of melanophores associated with integumentary patterns in winter flounder (Pleuronectes americanus). Comp Biochem Physiol A 121:241–247. doi:10.1016/S1095-6433(98)10124-1

    Google Scholar 

  • Mayo DJ, Burton D (1998b) β2-adrenoceptors mediate melanosome dispersion in winter flounder (Pleuronectes americanus). Can J Zool 76:175–180. doi:10.1139/cjz-76-1-175

    CAS  Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Hoboken, New Jersey, p 262

    Google Scholar 

  • Norman JR (1934) A systematic monograph on the flatfishes (Heterosomata), vol I, Psettodidae, Bothidae, Pleuronectidae. Oxford University Press, London, p 20

    Google Scholar 

  • Novales RR, Fujii R (1970) A melanin-dispersing effect of cyclic adenosine monophosphate on Fundulus melanophores. J Cell Physiol 75:133–136. doi:10.1002/jcp.1040750116

    CAS  PubMed  Google Scholar 

  • Osborn CM (1939) The physiology of color changes of flatfish. J Exp Zool 81:479–508. doi:10.1002/jez.1400810310

    Google Scholar 

  • Osborn CM (1941) Studies on the growth of integumentary pigment in the lower vertebrates. I. The origin of artificially developed melanophores on the normally unpigmented ventral surface of the summer flounder (Paralichthys dentatus). Biol Bull Mar Biol Lab Woods Hole 81:342–353

    Google Scholar 

  • Parker GH (1948) Animal colour changes and their neurohumours. Cambridge University Press, London, pp 109–175

    Google Scholar 

  • Polimanti O (1912) Einfluss der Augen und der Bodenbeschaffenheit auf die Farbe der Pleuronektiden. Biol Zbl 32:296–307

    Google Scholar 

  • Pouchet G (1876) Des changements de coloration sous l’influence des neufs. J Anat Physiol 12:1–90, 199–223

    Google Scholar 

  • Purchase CF, Boyce DL, Brown JA (2003) Occurrence of hypomelanization in cultured yellowtail flounder, Limanda ferruginea. Aquacult Res 33:1191–1193. doi:10.1046/j.1365-2109.2002.00764.x

    Google Scholar 

  • Ramachandran VS, Tyler CW, Gregory RL et al (1996) Rapid and adaptive camouflage in tropical flounders. Nature 379:815–818. doi:10.1038/379815a0

    CAS  PubMed  Google Scholar 

  • Randall D, Burggren W, French K (1997) Eckert animal physiology, mechanisms and adaptations, 5th edn. Freeman, New York, pp 273–299

    Google Scholar 

  • Roberts RJ, Young H, Milne JA (1971) Studies on the skin of plaice (Pleuronectes platessa L). 1. The structure and ultrastructure of normal plaice skin. J Fish Biol 4:87–98. doi:10.1111/j.1095-8649.1972.tb05656.x

    Google Scholar 

  • Saidel WM (1988) How to be unseen: an essay in obscurity. In: Atema J, Fay R, Popper AN, Tavolga W (eds) Sensory biology of aquatic animals. Springer, New York, pp 487–513

    Google Scholar 

  • Schaefer JG (1921) Beitrage zur Physiologie des Farbenwechsels der Fische. I. Untersuchungen en Pleuronectiden. II. Weitere Untersuchungen. Pflüg Arch ges Physiol 188:25–48

    CAS  Google Scholar 

  • Scott GT (1965) Physiology and pharmacology of color change in the sand flounder, Scopthalmus aquosus. Limnol Oceanogr 10:R230–R266

    Google Scholar 

  • Seamon KB, Daly JW (1981) Forskolin: a unique diterpene activator of cyclic AMP—generating systems. J Cycl Nucl Res 7:201–224

    CAS  Google Scholar 

  • Stoumboudi MT, Abraham M, Wendelaar BSE et al (2001) Ammonia induces stress-related changes in the skin of cultured gilthead seabream. Abstracts. 10th European Congress of Ichthyology, Prague, 3–7 September 2001, p 31

  • Sugimoto M, Oshima N (1995) Changes in adrenergic innervation to chromatophores during prolonged background adaptation in the medaka, Oryzias latipes. Pigment Cell Res 8:37–45. doi:10.1111/j.1600-0749.1995.tb00772.x

    CAS  PubMed  Google Scholar 

  • Sumner FB (1911) The adjustment of flatfishes to various backgrounds. A study of adaptive color change. J Exp Zool 10:409–505. doi:10.1002/jez.1400100405

    Google Scholar 

  • Takahashi A, Tsuchiya K, Yamanome T et al (2004) Possible involvement of melanin-concentrating hormone in food intake in a teleost, barfin flounder. Peptides 25:1613–1622. doi:10.1016/j.peptides.2004.02.022

    CAS  PubMed  Google Scholar 

  • van Eys GIJM, Peters PTW (1981) Evidence for a direct role of α-MSH in morphological background adaptation of the skin in Sarotherodon mossambicus. Cell Tissue Res 217:361–372

    PubMed  Google Scholar 

  • von Frisch K (1911) Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflug Arch Physiol 138:319–387. doi:10.1007/BF01680752

    Google Scholar 

  • von Wernøe TB (1928) Űber den verlauf und die Verteilung präganglionärer sympatischer Bahnen bei Fischen. In: Ege R (ed) Physiological papers dedicated to August Krogh. Heinemann, pp. 290–307

  • Wenckebach KF (1886) Beitrage zur Entwicklungsgeschichte der Knochenfische. Arch Mikr Anat 28:225–251. doi:10.1007/BF02961445

    Google Scholar 

  • Whitear M (1952) The innervation of the skin of teleost fishes. Q J Microsc Sci 93:289–305

    Google Scholar 

  • Williams SR (1902) Changes accompanying the migration of the eye and observations on the tractus opticus and tectum opticum in Pseudopleuronectes americanus. Bull Mus Comp Zool 40:1–57

    Google Scholar 

  • Yamanome T, Amano M, Takahashi A (2005) White background reduces the occurrence of staining, activates melanin concentrating hormone and promotes somatic growth in barfin flounder. Aquaculture 244:323–329. doi:10.1016/j.aquaculture.2004.11.020

    CAS  Google Scholar 

  • Young JZ (1935) The photoreceptors of lampreys. II. The functions of the pineal complex. J Exp Biol 12:246–253

    Google Scholar 

  • Zoond A, Eyre J (1934) Studies on the reptilean colour response. I. The bionomics and physiology of pigmentary activity of the chameleon. Philos Trans R Soc Lond B 223:27–55. doi:10.1098/rstb.1934.0002

    Google Scholar 

  • Zuasti A (2002) Melanization stimulating factor (MSF) and melanization inhibiting factor (MIF) in the integument of fish. Microsc Res Tech 58:488–495. doi:10.1002/jemt.10167

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I wish to thank Eileen Ryan and Sharon Wall for typing the manuscript, Connie Short for assistance with the graphics and Dr. Margaret Burton for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Burton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, D. Flatfish (Pleuronectiformes) chromatic biology. Rev Fish Biol Fisheries 20, 31–46 (2010). https://doi.org/10.1007/s11160-009-9119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-009-9119-0

Keywords

Navigation