Skip to main content
Log in

Modulation of fish growth hormone levels by salinity, temperature, pollutants and aquaculture related stress: a review

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The focus of this review is on the importance and regulation of fish growth hormone (GH), during exposure to stress. Alterations in environmental salinity impose osmoregulatory stress on fish and upon exposure to increased salinities GH has been shown to be important in maintaining hypoosmoregulatory function. Whilst studies mainly on salmonids, demonstrate that GH essentially performs a role as a seawater adapting hormone a clear correlation of elevated GH with growth and isoosmotic salinity exposure has been identified from studies on sparids. Variations in water temperature have been shown to modulate fish GH with the overall consensus of highest levels of GH during the warmer seasons of the year, suggesting an important role for GH during the temperature acclimatization process, but whether this relates to growth is unclear. Environmentally important pollutants, including xenoestrogens and heavy metals have been shown to affect GH mediated mechanisms, in fish, possibly via interference with the GH receptor and/or GH transcription, whereas aquacultural related stressors such as handling, confinement/overcrowding and nutritional stress have also been shown to affect GH levels. In addition the impact of aquacultural related stressors can also pre-dispose fish to disease leading to chronic suppression of GH. Finally, GH has been recently demonstrated to exert an anti-apoptotic effect in fish cells, when exposed to chemical stress, providing evidence that GH can also serve as a protective agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham M (1974) The ultrastructure of the cell types and of the neurosecretory innervation in the pituitary of Mugil cephalus L. from fresh water, the sea, and a hypersaline lagoon. I. The proximal pars distalis. Gen Comp Endocrinol 24:121–132. doi:10.1016/0016-6480(74)90164-6

    Article  PubMed  CAS  Google Scholar 

  • Ackerman PA, Iwama GK (2001) Physiological and cellular stress responses of juvenile rainbow trout to vibriosis. J Aquat Anim Health 13:173–180. doi:10.1577/1548-8667(2001)013<0173:PACSRO>2.0.CO;2

    Article  Google Scholar 

  • Agellon LB, Chen TT (1986) Rainbow trout growth hormone: molecular cloning of cDNA and expression in Escherichia coli. DNA 5:463–471

    PubMed  CAS  Google Scholar 

  • Agellon LB, Davies SL, Lin CM, Chen TT, Powers DA (1988) Rainbow trout has two genes for growth hormone. Mol Reprod Dev 1:11–17. doi:10.1002/mrd.1080010104

    Article  PubMed  CAS  Google Scholar 

  • Agustsson T, Sundell K, Sakamoto T, Ando M, Björnsson BT (2003) Pituitary gene expression of somatolactin, prolactin and growth hormone during Atlantic salmon parr-smolt transformation. Aquaculture 222:229–238. doi:10.1016/S0044-8486(03)00124-8

    Article  CAS  Google Scholar 

  • Almuly R, Cavari B, Ferstman H, Kolodny O, Funkenstein B (2000) Genomic structure and sequence of the gilthead seabream (Sparus aurata) growth hormone-encoding gene: identification of minisatellite polymorphism in intron I. Genome 43:836–845. doi:10.1139/gen-43-5-836

    Article  PubMed  CAS  Google Scholar 

  • Arakawa E, Kaneko T, Tsukamoto K, Hirano T (1992) Immunocytochemical detection of prolactin and growth hormone cells in the pituitary during early development of the Japanese eel, Anguilla japonica. Zoolog Sci 9:1061–1066

    CAS  Google Scholar 

  • Arnesen AM, Toften H, Augustsson T, Stefansson SO, Handeland SO, Björnsson BT (2003) Osmoregulation, feed intake, growth and growth hormone levels in 0+ Atlantic salmon (Salmo salar L) transferred to seawater at different stages of smolt development. Aquaculture 222:167–187. doi:10.1016/S0044-8486(03)00109-1

    Article  CAS  Google Scholar 

  • Arsenault JTM, Fairchild WL, Maclatchy DL, Burridge L, Haya K, Brown SB (2004) Effects of water-borne 4-nonylphenol and 17 β-estradiol exposures during parr-smolt transformation on growth and plasma IGF-I of Atlantic salmon (Salmo salar L.). Aquat Toxicol 66:255–265. doi:10.1016/j.aquatox.2003.09.005

    Google Scholar 

  • Arteeq B, Abdul F, Ahmad W (2006) Evidence of apoptotic effects of 2, 4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies. Life Sci 78:977–986. doi:10.1016/j.lfs.2005.06.008

    Article  CAS  Google Scholar 

  • Auperin B, Baroilelr JF, Ricordel MJ, Fostier A, Prunet P (1997) Effect of confinement stress on circulating levels of growth hormone and two prolactins in freshawater-adapted tilapia (Oreochromis niloticus). Gen Comp Endocrinol 108:35–44. doi:10.1006/gcen.1997.6938

    Article  PubMed  CAS  Google Scholar 

  • Ayson FG, Kaneko T, Hasegawa S, Hirano T (1994) Differential expression of two prolactin and growth hormone genes during early development of tilapia (Oreochromis mossambicus) in freshwater and seawater; implications for possible involvement in osmoregulation during early life stages. Gen Comp Endocrinol 95:143–152. doi:10.1006/gcen.1994.1111

    Article  PubMed  CAS  Google Scholar 

  • Ayson FG, de Jesus-Ayson EGT, Takemura A (2007) mRNA expression patterns for GH, PRL, SL, IGF-I and IGF-II during altered feeding status in rabbitfish, Siganus guttatus. Gen Comp Endocrinol 150:196–204. doi:10.1016/j.ygcen.2006.08.001

    Article  PubMed  CAS  Google Scholar 

  • Baixeras E, Jeay S, Kelly PA, Postel VMC (2001) The proliferative and antiapoptotic actions of growth hormone and insulin-like growth factor-1 are mediated through distinct signaling pathways in the pro-B Ba/F3 cell line. Endocrinology 142:2968–2977. doi:10.1210/en.142.7.2968

    Article  PubMed  CAS  Google Scholar 

  • Barrett BA, Mckeown BA (1989) Plasma growth hormone levels in Salmo gairdeneri: studies on temperature and the exercise intensity/duration relationship. Comp Biochem Physiol 94A:791–794. doi:10.1016/0300-9629(89)90635-X

    Article  CAS  Google Scholar 

  • Basu N, Nakano T, Grau EG, Iwama GK (2001) The effects of cortisol on heat shock protein 70 levels in two fish species. Gen Comp Endocrinol 124:97–105. doi:10.1006/gcen.2001.7688

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM et al (2002a) Heat shock protein genes and their functional significance in fish. Gene 295:173–183. doi:10.1016/S0378-1119(02)00687-X

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Kennedy CJ, Hodson PV, Iwama GK (2002b) Altered stress response in rainbow trout following a dietary administration of cortisol and β-naphoflavone. Fish Physiol Biochem 25:131–140. doi:10.1023/A:1020566721026

    Article  Google Scholar 

  • Beere HM, Green DR (2001) Stress management-heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11:6–10. doi:10.1016/S0962-8924(00)01874-2

    Article  PubMed  CAS  Google Scholar 

  • Benedet S, Johansson V, Sweeney G, Galay-Burgos M, Björnsson BT (2005) Cloning of two Atlantic salmon growth hormone receptor isoforms and in vitro ligand-binding response. Fish Physiol Biochem 31:315–329. doi:10.1007/s10695-005-2524-y

    Article  CAS  Google Scholar 

  • Benjamin M (1978) Cytological changes in prolactin, ACTH, and growth hormone cells of the pituitary gland of Pungitius pungitius L. in response to increased environmental salinities. Gen Comp Endocrinol 36:48–58

    Google Scholar 

  • Ber R, Daniel V (1992) Structure and sequence of the growth hormone-encoding gene from Tilapia nilotica. Gene 113:245–250

    Google Scholar 

  • Ber R, Daniel V (1993) Sequence analysis suggests a recent duplication of the growth hormone-encoding gene in Tilapia nilotica. Gene 125:143–150. doi:10.1016/0378-1119(93)90321-S

    Article  PubMed  CAS  Google Scholar 

  • Bindon SD, Fenwick JC, Perry SF (1994a) Branchial chloride cell proliferation in the rainbow trout, Oncorhynchus mykiss: implications for gas transfer. Can J Zool 72:1395–1402

    Article  CAS  Google Scholar 

  • Bindon SD, Gilmour KM, Fenwick JC, Perry SF (1994b) The effects of branchial chloride cell proliferation on respiratory function in the rainbow trout Oncorhynchus mykiss. J Exp Biol 197:47–63

    PubMed  Google Scholar 

  • Björnsson BT (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24. doi:10.1023/A:1007712413908

    Article  Google Scholar 

  • Björnsson BT, Thorarensen H, Hirano T, Ogasawara T, Kristinsson JB (1997) Photoperiod and temperature affect plasma growth hormone levels, growth condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon (Salmo salar) during parr-smolt transformation. Aquaculture 82:77–91. doi:10.1016/0044-8486(89)90397-9

    Article  Google Scholar 

  • Björnsson BT, Hemre GI, Bjornevik M, Hansen T (2000) Photoperiod regulation of plasma growth hormone levels during induced smoltification of underyearling Atlantic salmon. Gen Comp Endocrinol 119:17–25. doi:10.1006/gcen.2000.7439

    Article  PubMed  CAS  Google Scholar 

  • Björnsson BT, Johansson V, Benedet S, Einarsdottir IE, Hildahl J, Agustsson T et al (2002) Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action. Fish Physiol Biochem 27:227–242. doi:10.1023/B:FISH.0000032728.91152.10

    Article  Google Scholar 

  • Black PH (2002) Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun 16:622–653. doi:10.1016/S0889-1591(02)00021-1

    Article  PubMed  CAS  Google Scholar 

  • Boeuf G, Falcon J (2001) Photoperiod and growth in fish. Vie Milieu 51:247–266

    Google Scholar 

  • Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquaculture 177:129–152. doi:10.1016/S0044-8486(99)00074-5

    Article  Google Scholar 

  • Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol 130C:411–423

    CAS  Google Scholar 

  • Borski RJ, Yoshikawa JSM, Madsen SS, Nishioka RS, Zabetian C, Bern H et al (1994) Effects of environmental salinity on pituitary growth hormone content and cell activity in the euryhaline tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 95:483–494. doi:10.1006/gcen.1994.1148

    Article  PubMed  CAS  Google Scholar 

  • Calduch-Giner JA, Duval H, Chesnel F, Boeuf G, Perez-Sanchez J, Boujard D (2001) Fish growth hormone receptor: molecular characterization of two membrane-anchored forms. Endocrinology 142:3269–3273. doi:10.1210/en.142.7.3269

    Article  PubMed  CAS  Google Scholar 

  • Calduch-Giner JA, Mingarro M, Vega-Rubin de Celis S, Boujard D, Perez-Sanchez J (2003) Molecular cloning and characterization of gilthead sea bream (Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing. Comp Biochem Physiol 136B:1–13

    CAS  Google Scholar 

  • Cameron C, Gurure R, Reddy K, Moccia R, Leatherland JF (2002) Correlation between dietary lipid: protein ratios and plasma growth and thyroid hormone levels in juvenile Arctic charr, Salvelinus alpinus (L.). Aquacult Res 33:383–394. doi:10.1046/j.1365-2109.2002.00683.x

    Article  CAS  Google Scholar 

  • Cao QP, Duguay SJ, Plisetskaya EM, Steiner DF, Chan SJ (1989) Nucleotide sequence and growth hormone-regulated expression of salmon insulin-like growth factor I mRNA. Mol Endocrinol 3:2005–2010

    PubMed  CAS  Google Scholar 

  • Chang MH, Lin HC, Hwang PP (1997) Effects of cadmium on the kinetics of calcium uptake in developing tilapia larvae, Oreochromis mossambicus. Fish Physiol Biochem 16:459–470. doi:10.1023/A:1007780602426

    Article  Google Scholar 

  • Christiansen T, Korsgaard B, Jespersen A (1998) Induction of vitellogenin synthesis by nonylphenol and 17-β-estradiol and effects on the testicular structure in the eelpout Zoarces viviparous. Mar Environ Res 46:141–144. doi:10.1016/S0141-1136(97)00046-9

    Article  CAS  Google Scholar 

  • Company R, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J (1999) Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture 171:279–292. doi:10.1016/S0044-8486(98)00495-5

    Article  CAS  Google Scholar 

  • Crawford DL, Powers DA (1989) Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. Proc Natl Acad Sci USA 86:9365–9369. doi:10.1073/pnas.86.23.9365

    Article  PubMed  CAS  Google Scholar 

  • Cutler CP, Cramb G (2002) Branchial expression of an aquaporin 3 (AQP-3) homologue is downregulated in the European eel Anguilla anguilla following seawater acclimation. J Exp Biol 205:2643–2651

    PubMed  CAS  Google Scholar 

  • De Feo P (1996) Hormonal regulation of human protein metabolism. Eur J Endocrinol 135:7–18

    Article  PubMed  Google Scholar 

  • Deane EE, Woo NYS (2004) Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol 287:R1054–R1063

    CAS  Google Scholar 

  • Deane EE, Woo NYS (2005a) Cloning and characterization of sea bream Na+–K+-ATPase α and β subunit genes: In vitro effects of hormones on transcriptional and translational expression. Biochem Biophys Res Commun 331:1229–1238. doi:10.1016/j.bbrc.2005.04.038

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NYS (2005b) Upregulation of the somatotropic axis is correlated with increased G6PDH expression in black sea bream adapted to isoosmotic salinity. Ann N Y Acad Sci 1040:293–296. doi:10.1196/annals.1327.045

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NYS (2005c) Expression studies on glucose-6-phosphate dehydrogenase in sea bream: Effects of growth hormone, somatostatin, salinity and temperature. J Exp Zool 303A:676–688. doi:10.1002/jez.a.201

    Article  CAS  Google Scholar 

  • Deane EE, Woo NYS (2005d) Cloning and characterization of the hsp70 multigene family from silver sea bream: modulated gene expression between warm and cold temperature acclimation. Biochem Biophys Res Commun 330:776–783. doi:10.1016/j.bbrc.2005.03.039

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NYS (2005e) Evidence for disruption of Na+–K+-ATPase and hsp70 during vibriosis of sea bream Sparus (= Rhabdosargus) sarba Forsskål. J Fish Dis 28:239–251. doi:10.1111/j.1365-2761.2005.00624.x

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NYS (2005f) Modulation of β-actin, IGF-I and glucose-6-phosphate dehydrogenase gene expression during vibriosis of sea bream Sparus (= Rhabdosargus) sarba Forsskål. J Fish Dis 28:593–601. doi:10.1111/j.1365-2761.2005.00664.x

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NYS (2005g) Growth hormone increases hsc70/hsp70 expression and protects against apoptosis in whole blood preparations from silver sea bream. Ann N Y Acad Sci 1040:288–292. doi:10.1196/annals.1327.044

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NYS (2006a) Molecular cloning of growth hormone from silver sea bream: effects of abiotic and biotic stress on transcriptional and translational expression. Biochem Biophys Res Commun 342:1077–1082. doi:10.1016/j.bbrc.2006.02.069

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NYS (2006b) Tissue distribution, effects of salinity acclimation and ontogeny of aquaporin 3 in the marine teleost silver sea bream (Sparus sarba). Mar Biotechnol 8:663–671. doi:10.1007/s10126-006-6001-0

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Kelly SP, Woo NYS (1999a) Hormonal modulation of branchial Na+–K+-ATPase subunit mRNA in a marine teleost, Sparus sarba. Life Sci 66:1435–1444. doi:10.1016/S0024-3205(00)00454-9

    Article  Google Scholar 

  • Deane EE, Kelly SP, Lo CKM, Woo NYS (1999b) Effects of GH, prolactin and cortisol on hepatic heat shock protein 70 expression in a marine teleost Sparus sarba. J Endocrinol 161:413–421. doi:10.1677/joe.0.1610413

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Kelly SP, Chow INK, Woo NYS (2000) Effect of a prolactin pharmacological stimulant (sulpiride) and suppressant (bromocriptine) on heat shock protein 70 expression in Sparus sarba. Fish Physiol Biochem 22:125–133. doi:10.1023/A:1007807831274

    Article  CAS  Google Scholar 

  • Deane EE, Li J, Woo NYS (2001) Hormonal status and phagocytic activity in sea bream infected with vibriosis. Comp Biochem Physiol 129B:687–693

    CAS  Google Scholar 

  • Deane EE, Kelly SP, Luk JCY, Woo NYS (2002) Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar Biotechnol 4:193–205

    PubMed  CAS  Google Scholar 

  • Deane EE, Kelly SP, Collins PM, Woo NYS (2003) Larval development of silver sea bream (Sparus sarba): ontogeny of RNA-DNA ratio, GH, IGF-I, and Na+–K+-ATPase. Mar Biotechnol 5:79–91. doi:10.1007/s10126-002-0052-7

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Li J, Woo NYS (2004) Modulated heat shock protein expression during pathogenic Vibrio alginolyticus stress of sea bream. Dis Aquat Organ 62:205–215. doi:10.3354/dao062205

    Article  PubMed  CAS  Google Scholar 

  • DeWitte-Orr SJ, Bols NC (2005) Gliotoxin-induced cytotoxicity in three salmonid cell lines: cell death by apoptosis and necrosis. Comp Biochem Physiol 141C:157–167

    CAS  Google Scholar 

  • Drennon K, Moriyama S, Kawauchi H, Small B, Silverstein J, Parhar I et al (2003) Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel catfish (Ictalurus punctatus): assessment of environmental salinity and GH secretagogues on plasma GH levels. Gen Comp Endocrinol 133:314–322. doi:10.1016/S0016-6480(03)00194-1

    Article  PubMed  CAS  Google Scholar 

  • Duan CM, Plisetskaya EM (1993) Nutritional regulation of insulin-like growth factor-I mRNA expression in salmon tissues. J Endocrinol 139:243–252

    Article  PubMed  CAS  Google Scholar 

  • Duan CM, Plisetskaya EM, Dickhoff WW (1995) Expression of insulin-like growth factor I in normally and abnormally developing coho salmon (Oncorhynchus kisutch). Endocrinology 136:446–452. doi:10.1210/en.136.2.446

    Article  PubMed  CAS  Google Scholar 

  • Einarsdottir IE, Sakata S, Björnsson BT (2002) Atlantic halibut growth hormone: structure and plasma levels of sexually mature males and females during photoperiod-regulated annual cycles. Gen Comp Endocrinol 127:94–104. doi:10.1016/S0016-6480(02)00023-0

    Article  PubMed  CAS  Google Scholar 

  • Eisenhauer KM, Chun SY, Billig H, Hsueh AJW (1995) Growth hormone suppression of apoptosis in prevulatory rat follicles and partial neutralization by insulin-like growth factor binding protein. Biol Reprod 53:13–20. doi:10.1095/biolreprod53.1.13

    Article  PubMed  CAS  Google Scholar 

  • Elango A, Shepherd B, Chen TT (2006) Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary. Gen Comp Endocrinol 145:116–127. doi:10.1016/j.ygcen.2005.08.003

    Article  PubMed  CAS  Google Scholar 

  • Eppler E, Caelers A, Berishvili G, Reinecke M (2005) The advantage of absolute quantification in comparative hormone research as indicated by a newly established real time RT-PCR: GH, IGF-I, and IGF-II gene expression in the tilapia Oreochromis niloticus. Ann N Y Acad Sci 1040:301–304. doi:10.1196/annals.1327.047

    Article  PubMed  CAS  Google Scholar 

  • Evans DH (2002) Cell signalling and ion transport across the fish gill epithelium. J Exp Zool 293:336–347. doi:10.1002/jez.10128

    Article  PubMed  CAS  Google Scholar 

  • Farbridge KJ, Leatherland JF (1992a) Temporal changes in plasma thyroid hormone, growth hormone and free fatty acid concentrations, and hepatic 5/- monodeiodinase activity, lipid and protein content during chronic fasting and re-feeding in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 10:245–257. doi:10.1007/BF00004518

    Article  CAS  Google Scholar 

  • Farbridge KJ, Leatherland JF (1992b) Plasma growth hormone levels in fed and fasted rainbow trout (Oncorhynchus mykiss) are decreased following handling stress. Fish Physiol Biochem 10:67–73. doi:10.1007/BF00004655

    Article  CAS  Google Scholar 

  • Farbridge KJ, Burke MG, Leatherland JF (1985) Seasonal changes in the structure of the adenohypophysis of the brown bullhead (Ictalurus nebulosus LeSeur). Cytobios 44:49–66

    Google Scholar 

  • Farbridge KJ, Flett PA, Leatherland JF (1992) Temporal effects of restricted diet and compensatory increased dietary intake on thyroid function, plasma growth hormone levels and tissue lipid reserves of rainbow trout, Oncorhynchus mykiss. Aquaculture 104:157–174. doi:10.1016/0044-8486(92)90146-C

    Article  Google Scholar 

  • Fiess JC, Kunkel-Patterson A, Mathias L, Riley LG, Yancey PH, Hirano T et al (2007) Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the Mozamibique tilpaia (Oreochromis mossambicus). Comp Biochem Physiol 146A:252–264

    CAS  Google Scholar 

  • Figueroa J, San Martin R, Flores C, Grothusen H, Kausel G (2005) Seasonal modulation of growth hormone mRNA and protein levels in carp pituitary: evidence for two expressed genes. J Comp Physiol 175B:185–192

    Google Scholar 

  • Francis AA, Smith F, Pfuderer P (1974) A heart rate bioassay for crowding factors in goldfish. Prog Fish-Cult 36:196–200. doi:10.1577/1548-8659(1974)36[196:AHBFCF]2.0.CO;2

    Article  Google Scholar 

  • Friedmann AS, Watzin MC, Brinck JT, Leiter JC (1996) Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquat Toxicol 35:265–278. doi:10.1016/0166-445X(96)00796-5

    Article  CAS  Google Scholar 

  • Funkenstein B, Chen TT, Powers DA, Cavari B (1991) Cloning and sequencing of the gilthead sea bream (Sparus aurata) growth hormone encoding cDNA. Gene 103:243–247. doi:10.1016/0378-1119(91)90280-O

    Article  PubMed  CAS  Google Scholar 

  • Gabillard JC, Weil C, Rescan PY, Navarro I, Guitierrez J, Le Bail PY (2003a) Environmental temperature increases plasma GH levels independently of the nutritional status in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 133:17–26. doi:10.1016/S0016-6480(03)00156-4

    Article  PubMed  CAS  Google Scholar 

  • Gabillard JC, Rescan PY, Weil C, Fauconneau B, Le Bail PY (2003b) Effects of temperature on GH/IGF system gene expression during embryonic development of rainbow trout (Oncorhynchus mykiss). J Exp Zool 298A:134–142. doi:10.1002/jez.a.10280

    Article  CAS  Google Scholar 

  • Gabillard JC, Weil C, Rescan PY, Navarro I, Guitierrez J, Le Bail PY (2005) Does the GH/IGF system mediate the effect of water temperature on fish growth? A review. Cybium 29:107–117

    Google Scholar 

  • Gabillard JC, Yao K, Vandeputte M, Guitierrez J, Le Bail PY (2006) Differential expression of two GH receptor mRNA following temperature change in rainbow trout (Oncorhynchus mykiss). J Endocrinol 190:29–37. doi:10.1677/joe.1.06695

    Article  PubMed  CAS  Google Scholar 

  • Gagnon A, Jumarie C, Hontela A (2006) Effects of Cu on plasma cortisol and cortisol secretion by adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 78:59–65. doi:10.1016/j.aquatox.2006.02.004

    Article  PubMed  CAS  Google Scholar 

  • Geering K (1990) Subunit assembly and functional maturation of Na, K-ATPase. J Membr Biol 115:109–121. doi:10.1007/BF01869450

    Article  PubMed  CAS  Google Scholar 

  • Gélineau A, Mambrini M, Leatherland JF, Boujard T (1996) Effect of feeding time on hepatic nucleic acid, plasma T3, T4 and GH concentrations in rainbow trout. Physiol Behav 59:1061–1067. doi:10.1016/0031-9384(95)02249-X

    Article  PubMed  Google Scholar 

  • Giustina A, Wehrenberg WB (1992) The role of glucocorticoids in the regulation of growth hormone secretion: mechanisms and clinical significance. Trends Endocrinol Metab 3:306–311. doi:10.1016/1043-2760(92)90142-N

    Article  PubMed  CAS  Google Scholar 

  • Gomez JM, Boujard T, Fostier A, Le Bail PY (1996) Characterization of growth hormone nychthermal plasma profiles in catheterized rainbow trout (Oncorhynchus mykiss). J Exp Zool 274:171–180. doi:10.1002/(SICI)1097-010X(19960215)274:3<171::AID-JEZ4>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Villasenor LI, Zhang PJ, Chen TT, Powers DA (1988) Molecular cloning and sequencing of coho salmon growth hormone cDNA. Gene 65:239–246. doi:10.1016/0378-1119(88)90460-X

    Article  PubMed  CAS  Google Scholar 

  • Goverdina E, Fåhræus-Van R, Payne JF (2005) Endocrine disruption in the pituitary of white sucker (Castostomus commersoni) caged in a lake contaminated with iron-ore mine tailings. Hydrobiologia 532:221–224. doi:10.1007/s10750-004-9017-3

    Article  Google Scholar 

  • Gray ES, Kelley KM, Law S, Tsai R, Young G, Bern HA (1992) Regulation of hepatic growth hormone receptors in coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol 88:243–252. doi:10.1016/0016-6480(92)90256-J

    Article  PubMed  CAS  Google Scholar 

  • Guevel RL, Petit FG, Goff PL, Metvier R, Valotaire Y, Pacdel F (2000) Inhibition of rainbow trout (Oncorhynchus mykiss) estrogen receptor activity by cadmium. Biol Reprod 63:259–266. doi:10.1095/biolreprod63.1.259

    Article  PubMed  CAS  Google Scholar 

  • Handeland SO, Berge A, Björnsson BT, Lie O, Stefansson SO (2000) Seawater adaptation by out of season Atlantic salmon (Salmo salar L.) smolts at different temperatures. Aquaculture 181:377–396. doi:10.1016/S0044-8486(99)00241-0

    Article  Google Scholar 

  • Harmon JS, Sheridan MA (1992) Previous nutritional state and glucose modulate glucagon-mediated hepatic lipolysis in rainbow trout (Oncorhynchus mykiss). Zoolog Sci 9:275–281

    CAS  Google Scholar 

  • Hasegawa S, Hirano T, Ogasawara T, Iwata M, Bolton JP, Akiyama T et al (1987) Osmoregulatory ability of chum salmon, Oncorhynchus keta, reared in fresh water for prolonged period. Fish Physiol Biochem 4:101–110. doi:10.1007/BF02044319

    Article  CAS  Google Scholar 

  • Hedrick RP (1998) Relationships of the host, pathogen, and environment: implications for diseases of cultured and wild fish populations. J Aquat Anim Health 10:107–111. doi:10.1577/1548-8667(1998)010<0107:ROTHPA>2.0.CO;2

    Article  Google Scholar 

  • Hinckle PM, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262:16333–16337

    Google Scholar 

  • Hjeltnes B, Roberts RJ (1993) Vibriosis. In: Inglis V, Roberts RJ, Bromage NR (eds) Bacterial diseases of fish. University Press, Cambridge

    Google Scholar 

  • Holloway AC, Leatherland JF (1998) Neuroendocrine regulation of growth hormone secretion in teleost fishes with emphasis on the involvement of gonadal sex steroids. Rev Fish Biol Fish 8:1–21. doi:10.1023/A:1008824723747

    Article  Google Scholar 

  • Holloway AC, Reddy PK, Sheridan MA, Leatherland JF (1994) Diurnal rhythms of plasma growth hormone, somatostatin, thyroid hormones, cortisol and glucose concentrations in rainbow trout, Oncorhynchus mykiss during progressive food deprivation. Biol Rhythm Res 25:415–432

    Article  CAS  Google Scholar 

  • Holloway AC, Sheridan MA, Van Der Kraak G, Leatherland JF (1999) Correlation of plasma growth hormone with somatostatin, gonadal steroid hormones and thyroid hormones in rainbow trout during sexual recrudescence. Comp Biochem Physiol 123B:251–260

    CAS  Google Scholar 

  • Hontela A (1997) Endocrine and physiological responses of fish to xenobiotics: role of glucocorticosteroid hormones. Rev Toxicol 1:1–46

    CAS  Google Scholar 

  • Hontela A, Daniel C, Ricard AC (1996) Effects of acute and subacute exposures to cadmium on the interrenal and thyroid function in rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 35:171–182. doi:10.1016/0166-445X(96)00012-4

    Article  CAS  Google Scholar 

  • Horisberger JD, Lemas V, Kraehenbuhl JP, Rossier BC (1991) Structure–function relationship of Na, K-ATPase. Annu Rev Physiol 53:564–584. doi:10.1146/annurev.ph.53.030191.003025

    Article  Google Scholar 

  • Iwama GK, Thomas PT, Forsyth RB, Vijayan MM (1998) Heat shock protein expression in fish. Rev Fish Biol Fish 8:35–56. doi:10.1023/A:1008812500650

    Article  Google Scholar 

  • Jhingan E, Devlin RH, Iwama GK (2003) Disease resistance, stress response and effects of triploidy in growth hormone transgenic coho salmon. J Fish Biol 63:806–823. doi:10.1046/j.1095-8649.2003.00194.x

    Article  Google Scholar 

  • Jiao B, Huang X, Chan CB, Zhang L, Wang D, Cheng HK (2006) The co-existence of two growth hormone receptors in teleost fish and their differential signal transduction, tissue distribution and hormonal regulation of expression in seabream. J Mol Endocrinol 36:23–40. doi:10.1677/jme.1.01945

    Article  PubMed  CAS  Google Scholar 

  • Johnsson JL, Jonsson E, Björnsson BT (1996) Dominance, nutritional state, and growth hormone levels in rainbow trout (Oncorhynchus mykiss). Horm Behav 30:13–21. doi:10.1006/hbeh.1996.0003

    Article  PubMed  CAS  Google Scholar 

  • Jones I, Kille P, Sweeney G (2001) Cadmium delays growth hormone expression during rainbow trout development. J Fish Biol 59:1015–1022. doi:10.1111/j.1095-8649.2001.tb00168.x

    Article  CAS  Google Scholar 

  • Jorgensen EH, Aas-Hansen O, Maule AG, Strand JET, Vijayan MM (2004) PCB impairs smoltification and seawater performance in anadromous Arctic charr (Salvelinus alpinus). Comp Biochem Physiol 138C:203–212

    CAS  Google Scholar 

  • Kajimura S, Kawaguchi N, Kaneko T, Kawazoe I, Hirano T, Visitacio N et al (2004) Identification of the growth hormone receptor in an advanced teleost, the tilapia (Oreochromis mossambicus) with special reference to its distinct expression pattern in the ovary. J Endocrinol 181:65–76. doi:10.1677/joe.0.1810065

    Article  PubMed  CAS  Google Scholar 

  • Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N et al (2007) Salinity adaptation and gene profiling analysis in the European eel (Anguilla anguilla) using microarray technology. Gen Comp Endocrinol 152:274–280. doi:10.1016/j.ygcen.2006.12.025

    Article  PubMed  CAS  Google Scholar 

  • Kelly SP, Chow INK, Woo NYS (1999) Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost, Sparus sarba. Gen Comp Endocrinol 113:9–22. doi:10.1006/gcen.1998.7159

    Article  PubMed  CAS  Google Scholar 

  • Koelle S, Stojkovic M, Boie G, Wolf E, Sinowatz F (2002) Growth hormone inhibits apoptosis in in vitro produced bovine embryos. Mol Reprod Dev 61:180–186. doi:10.1002/mrd.1145

    Article  CAS  Google Scholar 

  • Knibb W, Robins A, Crocker L, Rizzon J, Heyward A, Wells J (1991) Molecular cloning and sequencing of Australian black bream Acanthopagrus butcheri and barramundi Lates calcarifer fish growth hormone cDNA using polymerase chain reaction. DNA Seq 2:121–123. doi:10.3109/10425179109039680

    Article  PubMed  CAS  Google Scholar 

  • Krumschnabel G, Manzi C, Berger C, Hofer B (2005) Oxidative stress, mitochondrial permeability transition and cell death in Cu-exposed trout hepatocytes. Toxicol Appl Pharmacol 209:62–73. doi:10.1016/j.taap. 2005.03.016

    Article  PubMed  CAS  Google Scholar 

  • Lacroix A, Hontela A (2004) A Comp assessment of the adrenotoxic effects of cadmium in two teleost species, rainbow trout, Oncorhynchus mykiss and yellow perch, Perca flavescens. Aquat Toxicol 67:13–21. doi:10.1016/j.aquatox.2003.11.010

    Article  PubMed  CAS  Google Scholar 

  • Laurent P, Dunel-Erb ES, Chevalier C, Lignon J (1994) Gill epithelial cells kinetics in a freshwater teleost, Oncorhynchus mykiss during adaptation to ion poor water and hormonal treatments. Fish Physiol Biochem 13:353–370. doi:10.1007/BF00003415

    Article  CAS  Google Scholar 

  • Leatherland JF, Ball JN, Hyder M (1974) Structure and fine structure of the hypophyseal pars distalis in indigenous African species of the genus Tilapia. Cell Tissue Res 149:245–266. doi:10.1007/BF00222277

    Article  PubMed  CAS  Google Scholar 

  • Lee KM, Kaneko T, Katoh F, Aida K (2006) Prolactin gene expression and gill chloride cell activity in fugu Takifugu rubripes exposed to hypoosmotic environment. Gen Comp Endocrinol 149:285–293. doi:10.1016/j.ygcen.2006.06.009

    Article  PubMed  CAS  Google Scholar 

  • Leena S, Oommen OV (2000) Hormonal control on enzymes of osmoregulation in a teleost, Anabus testudineus (Bloch): an in vivo and in vitro study. Endocr Res 26:169–187

    Article  PubMed  CAS  Google Scholar 

  • Lerner DT, Björnsson BT, McCormick SD (2007a) Larval exposure to 4-nonylphenol and 17v beta-estradiol affects physiological and behavioural development of seawater adaptation in Atlantic salmon smolts. Environ Sci Technol 41:4479–4485. doi:10.1021/es070202w

    Article  PubMed  CAS  Google Scholar 

  • Lerner DT, Björnsson BT, McCormick SD (2007b) Effects of aqueous exposure to polychlorinated biphenyls (Aroclor 1254) on physiology and behaviour of smolt development of Atlantic salmon. Aquat Toxicol 81:329–336. doi:10.1016/j.aquatox.2006.12.018

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhou L, Woo NYS (2003) Invasion route and pathogenic mechanisms of Vibrio alginolyticus to silver sea bream Sparus sarba. J Aquat Anim Health 15:302–313. doi:10.1577/H03-034.1

    Article  Google Scholar 

  • Li WS, Chen D, Wong AO, Lin HR (2005) Molecular cloning, tissue distribution, and ontogeny of mRNA expression of growth hormone in orange spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 144:78–89. doi:10.1016/j.ygcen.2005.04.018

    Article  PubMed  CAS  Google Scholar 

  • Li M, Greenaway J, Raine J, Petrik J, Hahnel A, Leatherland J (2006) Growth hormone and insulin-like growth factor gene expression prior to the development of the pituitary gland in rainbow trout (Oncorhynchus mykiss) embryos reared at two temperatures. Comp Biochem Physiol 143A:514–522

    CAS  Google Scholar 

  • Liber K, Knuth ML, Stay FS (1999) An integrated evaluation of the persistence and effects of 4-nonylphenol in an experimental littoral ecosystem. Environ Toxicol Chem 18:357–362. doi:10.1897/1551-5028(1999)018<0357:AIEOTP>2.3.CO;2

    Article  CAS  Google Scholar 

  • Lin JJ, Somero GN (1995) Temperature dependent changes in expression of thermostable and thermolabile isozymes of cytosolic malate dehydrogenase in the eurythermal goby fish Gillichthys mirablis. Physiol Zool 68:114–128

    CAS  Google Scholar 

  • Liu XM, Shao JZ, Xiang LX, Chen XY (2006) Cytotoxic effects and apoptosis induction of atrazine in a grass carp (Ctenopharyngodon idellus) cell line. Environ Toxicol 21:80–89. doi:10.1002/tox.20159

    Article  PubMed  CAS  Google Scholar 

  • Lorens J, Nerland AH, Male R, Lossius I, Telle W, Totland G (1989) The nucleotide sequence of Atlantic salmon growth hormone cDNA. Nucleic Acids Res 17:2352. doi:10.1093/nar/17.6.2352

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie DS, Van Putte CM, Leiner KA (1998) Nutrient regulation of endocrine function in fish. Aquaculture 161:3–25. doi:10.1016/S0044-8486(97)00253-6

    Article  CAS  Google Scholar 

  • Madsen SS (1990) The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr Salmo trutta trutta. Gen Comp Endocrinol 79:1–11. doi:10.1016/0016-6480(90)90082-W

    Article  PubMed  CAS  Google Scholar 

  • Madsen SS, Jensen MK, Nøhr J, Kristiansen K (1995) Expression of Na+–K+-ATPase in the brown trout, Salmo trutta: in vivo modulation by hormones and seawater. Am J Physiol 269:R1339–R1345

    PubMed  CAS  Google Scholar 

  • Madsen SS, Mathiesen AB, Korsgaard B (1997) Effects of 17β-estradiol and 4-nonylphenol on smoltification and vitellogenesis in Atlantic salmon (Salmo salar). Fish Physiol Biochem 17:303–312. doi:10.1023/A:1007754123787

    Article  CAS  Google Scholar 

  • Madsen SS, Skovølling S, Nielsen C, Korsgaard B (2004) 17-β estradiol and 4-nonylphenol delay smolt development and downstream migration in Atlantic salmon, Salmo salar. Aquat Toxicol 68:109–120

    Article  PubMed  CAS  Google Scholar 

  • Magdelin S, Uchida K, Hirano T, Grau G, Abdelfattah A, Nozaki M (2007) Effects of environmental salinity on somatic growth and growth hormone/insulin–like growth factor–I axis in juvenile tilapia Oreochromis mossambicus. Fish Sci 73:1025–1034. doi:10.1111/j.1444-2906.2007.01432.x

    Article  CAS  Google Scholar 

  • Makino K, Onuma TA, Kitahashi T, Ando H, Ban M, Urano A (2007) Expression of hormone genes and osmoregulation in homing chum salmon. Gen Comp Endocrinol 152:304–309. doi:10.1016/j.ygcen.2007.01.010

    Article  PubMed  CAS  Google Scholar 

  • Mancera JM, McCormick SD (1998a) Evidence for growth hormone/insulin-like growth factor 1 axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen Comp Endocrinol 111:103–112. doi:10.1006/gcen.1998.7086

    Article  PubMed  CAS  Google Scholar 

  • Mancera JM, McCormick SD (1998b) Osmoregulatory actions of the GH/IGF1 axis in non-salmonid teleosts. Comp Biochem Physiol 121B:43–48

    CAS  Google Scholar 

  • Mancera JM, McCormick SD (1999) Influence of cortisol, growth hormone, insulin-like growth factor 1 and 3, 3′, 5 triiodo-L-thyronine on hypoosmoregulatory ability in the euryhaline teleost Fundulus heteroclitus. Fish Physiol Biochem 21:25–33. doi:10.1023/A:1007737924339

    Article  CAS  Google Scholar 

  • Mancera JM, Fernández-Llebrez P, Pérez-Figares JM (1995) Effect of decreased environmental salinity on growth hormone cells in the euryhaline gilthead seabream (Sparus aurata L.). J Fish Biol 46:494–500. doi:10.1111/j.1095-8649.1995.tb05990.x

    Article  CAS  Google Scholar 

  • Mancera JM, Carrión RL, Pilar MD, Rio MD (2002) Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.). Gen Comp Endocrinol 129:95–103. doi:10.1016/S0016-6480(02)00522-1

    Article  CAS  Google Scholar 

  • Marchant TA, Peter RE (1986) Seasonal variations in body growth rates and circulating levels of growth hormone in the goldfish, Carassius auratus. J Exp Zool 237:231–239. doi:10.1002/jez.1402370209

    Article  PubMed  CAS  Google Scholar 

  • Marchi B, Burlando B, Moore MN, Viarengo A (2004) Mercury and copper induced lysosomal membrane destabilization depends on [Ca2+]i dependent phospholipase A2 activation. Aquat Toxicol 66:197–204. doi:10.1016/j.aquatox.2003.09.003

    Article  PubMed  CAS  Google Scholar 

  • Marchi B, Burlando B, Panfoli I, Dondero F, Viarengo A, Gallo G (2005) Heavy metal interference with growth hormone signaling in trout hepatoma cells RTH-149. Biometals 18:179–190. doi:10.1007/s10534-004-6254-x

    Article  PubMed  CAS  Google Scholar 

  • Marr JCA, Lipton J, Cacela D, Hansen JA, Bergman HL (1996) Relationship between copper exposure duration, tissue copper concentration and rainbow trout growth. Aquat Toxicol 36:17–30. doi:10.1016/S0166-445X(96)00801-6

    Article  CAS  Google Scholar 

  • Marshall WS, Singer TD (2002) Cystic fibrosis transmembrane conductance regulator in teleost fish. Biochim Biophys Acta 1566:16–27. doi:10.1016/S0005-2736(02)00584-9

    Article  PubMed  CAS  Google Scholar 

  • Martí-Palanca H, Martinez-Barberá JP, Pendón C, Valdivia MM, Pérez-Sánchez JP, Kaushik S (1996) Growth hormone as a function of age and dietary protein: energy ratio in a marine teleost, the gilthead sea bream (Sparus aurata). Growth Regul 6:253–259

    PubMed  Google Scholar 

  • McConkey DJ (1998) Biochemical determinants of apoptosis and necrosis. Toxicol Lett 99:157–168. doi:10.1016/S0378-4274(98)00155-6

    Article  PubMed  CAS  Google Scholar 

  • McCormick SD (1995) Hormonal control of gill Na+–K+-ATPase and chloride cell function. In: Wood CM, Shuttleworth TJ (eds) Cellular and molecular approaches to fish ionic regulation. Academic Press, New York

    Google Scholar 

  • McCormick SD (1996) Effects of growth hormone and insulin-like growth factor 1 on salinity tolerance and gill Na+–K+-ATPase in Atlantic salmon (Salmo salar): Interaction with cortisol. Gen Comp Endocrinol 101:3–11. doi:10.1006/gcen.1996.0002

    Article  PubMed  CAS  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794. doi:10.1668/0003-1569(2001)041[0781:ECOOIT]2.0.CO;2

    Article  CAS  Google Scholar 

  • McCormick SD, Björnsson BT, Sheridan M, Eilertson C, Carey JB, O’Dea M (1995) Increased daylength stimulates plasma growth hormone and gill Na+–K+-ATPase in Atlantic salmon (Salmo salar). J Comp Physiol 165B:245–254

    Google Scholar 

  • McCormick SD, Shrimpton JM, Carey JB, O’Dea MF, Sloan KE, Moriyama S et al (1998) Repeated and acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 168:221–235. doi:10.1016/S0044-8486(98)00351-2

    Article  CAS  Google Scholar 

  • McCormick SD, Moriyama S, Björnsson BT (2000) Low temperature limits photoperiod control of smolting in Atlantic salmon through endocrine mechanisms. Am J Physiol 278:R1352–R1361

    CAS  Google Scholar 

  • McCormick SD, Shrimpton JM, Moriyama S, Bjornsson BT (2002) Effects of an advanced temperature cycle on smolt development and endocrinology indicate that temperature is not a zeitgeber for smolting in Atlantic salmon. J Exp Biol 205:3553–3560

    PubMed  Google Scholar 

  • McCormick SD, O’Dea MF, Moeckel AM, Björnsson BT (2003) Endocrine and physiological changes in Atlantic salmon smolts following hatchery release. Aquaculture 222:45–57. doi:10.1016/S0044-8486(03)00101-7

    Article  CAS  Google Scholar 

  • McCormick SD, O’Dea MF, Moekel AM, Lerner DT, Björnsson BT (2005) Endocrine disruption of parr-smolt transformation and seawater tolerance of Atlantic salmon by 4-nonylphenol and 17β-estradiol. Gen Comp Endocrinol 142:280–288. doi:10.1016/j.ygcen.2005.01.015

    Article  PubMed  CAS  Google Scholar 

  • Mingarro M, Vega-Rubin DC, Astola A, Pendon C, Valdivia MM, Pérez-Sánchez J (2002) Endocrine mediators of seasonal growth in gilthead sea bream (Sparus aurata): The growth hormone and somatolactin paradigm. Gen Comp Endocrinol 128:102–111. doi:10.1016/S0016-6480(02)00042-4

    Article  PubMed  CAS  Google Scholar 

  • Momota H, Kosugi R, Hiramatsu H, Ohgai H, Hara A, Ishioka H (1988) Nucleotide sequence of cDNA encoding the pregrowth hormone of red sea bream (Pagrus major). Nucleic Acids Res 16:3107. doi:10.1093/nar/16.7.3107

    Article  PubMed  CAS  Google Scholar 

  • Moore A, Scott AP, Lower N, Katsiadaki I, Greenwood L (2003) The effects of 4-nonylphenol and atrazine on Atlantic salmon (Salmo salar L) smolts. Aquaculture 222:253–263. doi:10.1016/S0044-8486(03)00126-1

    Article  CAS  Google Scholar 

  • Morgan JD, Sakamoto T, Grau EG, Iwama GK (1997) Physiological and respiratory responses of the Mozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comp Biochem Physiol 117A:391–398. doi:10.1016/S0300-9629(96)00261-7

    Article  CAS  Google Scholar 

  • Moriyama S, Shimma H, Tagawa M, Kagawa H (1997) Changes in plasma insulin-like growth factor-I in the precociously maturing amago salmon Oncorhynchus masou ishikawai. Fish Physiol Biochem 17:253–259. doi:10.1023/A:1007725010022

    Article  CAS  Google Scholar 

  • Mousa SA, Mousa MA (1999) Immunocytochemical and histological studies on the hypophyseal-gonadal system in the freshwater Nile tilapia, Oreochromis niloticus (L.), during sexual maturation and spawning in different habitats. J Exp Zool 284:343–354. doi:10.1002/(SICI)1097-010X(19990801)284:3<343::AID-JEZ12>3.0.CO;2-V

    Article  PubMed  Google Scholar 

  • Nagahama Y, Clarke WC, Hoar WS (1977) Influence of salinity on ultrastructure of the secretory cells of the adenohypophyseal pars distalis in yearling coho salmon (Oncorhynchus kisutch). Can J Zool 55:183–198

    Article  PubMed  CAS  Google Scholar 

  • Narnaware YK, Kelly SP, Woo NYS (1997) Effect of injected growth hormone on phagocytosis in silver sea bream (Sparus sarba) adapted to hyper- and hypo- osmotic salinities. Fish Shellfish Immunol 7:515–517. doi:10.1006/fsim.1997.0103

    Article  Google Scholar 

  • Narnaware YK, Kelly SP, Woo NYS (2000) Effect of salinity and ration size on macrophage phagocytosis in juvenile black sea bream (Mylio macrocephalus). J Appl Ichthyol 16:86–88. doi:10.1046/j.1439-0426.2000.00113.x

    Article  Google Scholar 

  • Nicoll CS, Steiny SS, King DS, Nishioka RS, Mayer GL, Eberhardt NL et al (1987) The primary structure of coho salmon growth hormone and its cDNA. Gen Comp Endocrinol 68:387–399. doi:10.1016/0016-6480(87)90077-3

    Article  PubMed  CAS  Google Scholar 

  • Nishioka RS, Bern HA, Lai KV, Nagahama Y, Grau EG (1982) Changes in the endocrine organs of coho salmon during normal and abnormal smoltification—an electron microscope study. Aquaculture 28:21–38. doi:10.1016/0044-8486(82)90005-9

    Article  CAS  Google Scholar 

  • Nonnotte G, Boeuf G (1995) Extracellular ionic and acid base adjustments of Atlantic salmon presmolts and smolts in freshwater and after transfer to seawater: the effects of ovine growth hormone on the acquisition of euryhalinity. J Fish Biol 46:563–577. doi:10.1111/j.1095-8649.1995.tb01097.x

    Article  CAS  Google Scholar 

  • Nordgarden U, Björnsson BT, Hansen T (2007) Developmental stage of Atlantic salmon parr regulates pituitary GH secretion and parr-smolt transformation. Aquaculture 264:441–448. doi:10.1016/j.aquaculture.2006.12.040

    Article  CAS  Google Scholar 

  • Oberhammer F, Wilson JW, Dive C, Morris ID, Hichman JA, Wakaling AE et al (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684

    PubMed  CAS  Google Scholar 

  • Olivereau M, Ball JN (1970) Pituitary influences on osmoregulation in teleosts. Mem Soc Endocrinol 18:57–82

    Google Scholar 

  • Pelis RM, McCormick SD (2001) Effects of growth hormone and cortisol on Na+–K+-2Cl cotransporter localization and abundance in the gills of Atlantic salmon. Gen Comp Endocrinol 124:134–143. doi:10.1006/gcen.2001.7703

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Sánchez J (2000) The involvement of growth hormone in growth regulation, energy homeostasis and immune function in sea bream (Sparus aurata): a short review. Fish Physiol Biochem 22:135–144. doi:10.1023/A:1007816015345

    Article  Google Scholar 

  • Pérez-Sánchez J, Marti-Palanca H, Le Bail PY (1994a) Seasonal changes in circulating growth hormone (GH), hepatic GH-binding protein and plasma insulin-like growth factor-1 immunoreactivty in a marine fish, gilthead sea bream, Sparus aurata. Fish Physiol Biochem 13:199–208. doi:10.1007/BF00004358

    Article  Google Scholar 

  • Pérez-Sánchez J, Martí-Palanca H, Le Bail PY (1994b) Homologous growth hormone (GH) binding in gilthead sea bream (Sparus aurata). Effect of fasting and refeeding on hepatic GH-binding and plasma somatomedin-like immunoreactivity. J Fish Biol 44:287–301

    Google Scholar 

  • Pérez-Sánchez J, Martí-Palanca H, Kaushik SJ (1995) Ration size and protein intake affecting circulating growth hormone concentration, hepatic growth hormone binding and plasma insulin-like growth factor—I immunoreactivity in a marine teleost, the gilthead sea bream (Sparus aurata). J Nutr 125:546–552

    PubMed  Google Scholar 

  • Pérez-Sánchez J, Calduch-Giner JA, Mingarro M, Vega-Rubin de Celis S, Gómez-Requeni P, Saera-Vila A et al (2002) Overview of fish growth hormone family. New insights in genomic organization and heterogeneity of growth hormone receptors. Fish Physiol Biochem 27:243–258. doi:10.1023/B:FISH.0000032729.72746.c8

    Article  Google Scholar 

  • Perrot V, Funkenstein B (1999) Cellular distribution of insulin-like growth factor-II (IGF-II) mRNA and hormonal regulation of IGF-I and IGF-II mRNA expression in rainbow trout testis (Oncorhynchus mykiss). Fish Physiol Biochem 20:219–229. doi:10.1023/A:1007735314871

    Article  CAS  Google Scholar 

  • Perry SF (1998) Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp Biochem Physiol 119A:9–16

    CAS  Google Scholar 

  • Pfuderer P, Williams P, Francis AA (1974) Partial purification of the crowding factor from Carrassius auratus and Cyprinus carpio. J Exp Zool 187:375–382. doi:10.1002/jez.1401870306

    Article  PubMed  CAS  Google Scholar 

  • Pickering AD, Pottinger TG, Sumpter JP, Carragher JF, Le Bail PY (1991) Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 83:86–93. doi:10.1016/0016-6480(91)90108-I

    Article  PubMed  CAS  Google Scholar 

  • Pierce AL, Shearer KD, Baker DM, Dickhoff WW (2001) An autumn profile of growth regulatory hormones in chinook salmon (Oncorhynchus tshawytscha). Fish Physiol Biochem 25:83–88

    Article  Google Scholar 

  • Pierce AL, Fox BK, Davis LK, Visitacion N, Kitashi T, Hirano T, Grau EG (2007) Prolactin receptor, growth hormone receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting. Gen Comp Endocrinol 154:31–40

    Article  PubMed  CAS  Google Scholar 

  • Pottinger TG, Rand-Weaver M, Sumpter JP (2003) Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilisation. Comp Biochem Physiol 136B:403–417

    CAS  Google Scholar 

  • Raine JC, Hua K, Bureau DP, Vijayan MM, Leatherland JF (2007) Influence of ration level and rearing temperature on hepatic GHR1 and 2, and hepatic and intestinal TRα and TRβ gene expression in late stages of rainbow trout embryos. J Fish Biol 71:148–162. doi:10.1111/j.1095-8649.2007.01476.x

    Article  CAS  Google Scholar 

  • Ramachandra S, Studzinski GP (1994) Morphological and biochemical criteria of apoptosis. In: Studzinski GP (ed) Cell growth and apoptosis. Oxford University Press, New York

    Google Scholar 

  • Reddy PK, Leatherland JF (1994) Does time of feeding affect the diurnal of palsma hormone and glucose concentartion and hepatic glycogen content of rainbow trout? Fish Physiol Biochem 13:133–140. doi:10.1007/BF00004338

    Article  CAS  Google Scholar 

  • Reineke M, Björnsson BT, Dickoff WW, McCormick SD, Navarro I, Power DM et al (2005) Growth hormone and insulin-like growth factors in fish: where we are and where to go. Gen Comp Endocrinol 142:20–24. doi:10.1016/j.ygcen.2005.01.016

    Article  CAS  Google Scholar 

  • Rentier-Delrue F, Swennen D, Mercier L, Lion M, Benrubi O, Martial JA (1989a) Molecular cloning and characterization of two forms of trout growth hormone cDNA: expression and secretion of tgh-II by Escherichia coli. DNA 8:109–117

    PubMed  CAS  Google Scholar 

  • Rentier-Delrue F, Swennen D, Philippart JC, L’Hoir C, Lion M, Benrubi O et al (1989b) Tilapia growth hormone; molecular cloning of cDNA and expression in Escherichia coli. DNA 8:271–278

    PubMed  CAS  Google Scholar 

  • Ricordel MJ, Smal J, Le Bail PY (1995) Application of a recombinant cichlid growth hormone radioimmunoassay to measure native GH in tilapia (Oreochromis niloticus) bred at different temperatures. Aquat Living Resour 8:153–160. doi:10.1051/alr:1995012

    Article  Google Scholar 

  • Riley LG, Richman NH, Hirano T, Grau EG (2002) Activation of the growth hormone/insulin-like growth factor axis by treatment with 17 alpha methytestosterone and seawater rearing in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 127:285–292. doi:10.1016/S0016-6480(02)00051-5

    Article  PubMed  CAS  Google Scholar 

  • Riley LG, Hirano T, Grau EG (2003) Effects of transfer from seawater to freshwater on the growth hormone/insulin-like growth factor-1 axis and prolactin in the tilapia, Oreochromis mossambicus. Comp Physiol Biochem 136B:647–655. doi:10.1016/S1096-4959(03)00246-X

    Article  CAS  Google Scholar 

  • Robertson L, Thomas P, Arnold CR, Trant JM (1987) Plasma cortisol and secondary stress responses of red drum to handling, transport, rearing density and disease outbreak. Prog Fish-Cult 49:1–12. doi:10.1577/1548-8640(1987)49<1:PCASSR>2.0.CO;2

    Article  CAS  Google Scholar 

  • Robyn A, Weigent DA (2004) The inhibition of apoptosis in EL4 lymphoma cells overexpressing growth hormone. Neuroimmunomodulation 11:149–159. doi:10.1159/000076764

    Article  CAS  Google Scholar 

  • Rotllant J, Balm PHM, Wendelaar-Bonga SE, Pérez-Sánchez J, Tort L (2000a) A drop in ambient temperature results in a transient reduction of interrenal ACTH responsiveness in the gilthead sea bream (Sparus aurata L.). Fish Physiol Biochem 23:265–273. doi:10.1023/A:1007873811975

    Article  CAS  Google Scholar 

  • Rotllant J, Balm PHM, Ruane NM, Pérez-Sánchez J, Wendelaar-Bonga SE, Tort L (2000b) Pituitary proopiomelanocortin-derived peptides and hypothalamus-pituitary-interrenal axis activity in gilthead sea bream (Sparus aurata) during prolonged crowding stress: differential regulation of adrenocorticotropin hormone and α-melanocyte-stimulating hormone release by corticotrophin-releasing hormone and thyrotropin-releasing hormone. Gen Comp Endocrinol 199:152–163. doi:10.1006/gcen.2000.7508

    Article  CAS  Google Scholar 

  • Rotllant J, Balm PHM, Pérez-Sánchez J, Wendelaar-Bonga SE, Tort L (2001) Pituitary and interrenal function in gilthead sea bream (Sparus aurata L., Teleostei) after handling and confinement stress. Gen Comp Endocrinol 121:333–342. doi:10.1006/gcen.2001.7604

    Article  PubMed  CAS  Google Scholar 

  • Rydevik M, Borg B, Haux C, Kawauchi H, Björnsson BT (1990) Plasma growth hormone levels increase during seawater exposure of sexually mature Atlantic salmon parr Salmo salar L. Gen Comp Endocrinol 80:9–15. doi:10.1016/0016-6480(90)90142-9

    Article  PubMed  CAS  Google Scholar 

  • Saera-Vila A, Calduch-Giner JA, Perez-Sanchez J (2005) Duplication of growth hormone receptor (GHR) in fish genome: gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 142:193–203. doi:10.1016/j.ygcen.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  • Sakai M, Kajita Y, Kobayashi M, Kawauchi H (1997) Immunostimulating effect of growth hormone: in vivo administration of growth hormone in rainbow trout enhances resistance to Vibrio anguillarum infection. Vet Immunol Immunopathol 57:147–152. doi:10.1016/S0165-2427(96)05771-6

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Hirano T (1993) Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc Natl Acad Sci USA 90:1912–1916. doi:10.1073/pnas.90.5.1912

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, McCormick SD (2006) Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 147:24–30. doi:10.1016/j.ygcen.2005.10.008

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, McCormick SD, Hirano T (1993) Osmoregulatory actions of growth hormone and its mode of action in salmonids: a review. Fish Physiol Biochem 11:155–164. doi:10.1007/BF00004562

    Article  CAS  Google Scholar 

  • Sakamoto T, Shepherd BS, Madsen SS, Nishioka RS, Siharath K, Richman NH et al (1997) Osmoregulatory actions of growth hormone and prolactin in an advanced teleost. Gen Comp Endocrinol 106:95–101. doi:10.1006/gcen.1996.6854

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3:228–236. doi:10.1379/1466-1268(1998)003<0228:HSPROS>2.3.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Sangiao-Alvarellos S, Miguez JM, Soengas JL (2005) Actions of growth hormone on carbohydrate metabolism and osmoregulation of rainbow trout (Oncorhynchus kisutch). Gen Comp Endocrinol 141:214–225. doi:10.1016/j.ygcen.2005.01.007

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Watanabe K, Murata K, Sakaguchi M, Kariya Y, Kimura S et al (1988) Molecular cloning and nucleotide sequence of tuna growth hormone cDNA. Biochim Biophys Acta 949:35–42

    PubMed  CAS  Google Scholar 

  • Shin DH, Lee E, Kim JW, Kwon BS, Jung MK, Jee YH et al (2004) Protective effect of growth hormone on neuronal apoptosis after hypoxia-ischemia in the neonatal rat brain. Neurosci Lett 354:64–68. doi:10.1016/j.neulet.2003.09.070

    Article  PubMed  CAS  Google Scholar 

  • Seddiki H, Boeuf G, Maxime V, Peyraud C (1996) Effect of growth hormone treatment on oxygen consumption and sea water adaptability in Atlantic salmon parr and pre-smolts. Aquaculture 148:49–62. doi:10.1016/S0044-8486(96)01407-X

    Article  CAS  Google Scholar 

  • Seddon WL (1997) Mechanisms of temperature acclimation in the channel catfish Ictalarus punctatus: isozymes and quantitative changes. Comp Biochem Physiol 118A:813–820. doi:10.1016/S0300-9629(97)87356-2

    Article  CAS  Google Scholar 

  • Seidelin M, Madsen SS (1999) Endocrine control of Na+–K+-ATPase Na+–K+-ATPase and chloride cell development in brown trout (Salmo trutta): interaction of insulin-like growth factor-1 with prolactin and growth hormone. J Endocrinol 162:127–135. doi:10.1677/joe.0.1620127

    Article  PubMed  CAS  Google Scholar 

  • Seidelin M, Madsen SS, Byrialsen A, Kristiansen K (1999) Effects of insulin-like growth factor-1 and cortisol on Na+, K+, ATPase expression in osmoregulatory tissues of brown trout (Salmo trutta). Gen Comp Endocrinol 113:331–342. doi:10.1006/gcen.1998.7225

    Article  PubMed  CAS  Google Scholar 

  • Sekine S, Mizukami T, Nishi T, Kuwana Y, Saito A, Sato M et al (1985) Cloning and expression of cDNA for salmon growth hormone in Escherichia coli. Proc Natl Acad Sci USA 82:4306–4310. doi:10.1073/pnas.82.13.4306

    Article  PubMed  CAS  Google Scholar 

  • Sekine S, Mizukami T, Saito A, Kawauchi H, Itoh S (1989) Isolation and characterization of a novel growth hormone cDNA from chum salmon (Oncorhynchus keta). Biochim Biophys Acta 1009:117–120

    PubMed  CAS  Google Scholar 

  • Sekkali B, Brim H, Muller M, Argenton F, Bortolussi M, Colombo L et al (1999) Structure and function analysis of a tilapia (Oreochromis mossambicus) growth hormone gene: activation and repression by pituitary transcription factor Pit-1. DNA Cell Biol 18:489–502. doi:10.1089/104454999315213

    Article  PubMed  CAS  Google Scholar 

  • Shamblott MJ, Cheng CM, Bolt D, Chen TT (1995) Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to erogenous growth hormone. Proc Natl Acad Sci USA 92:6943–6946. doi:10.1073/pnas.92.15.6943

    Article  PubMed  CAS  Google Scholar 

  • Shepherd BS, Drennon K, Johnson J, Nichols JW, Playle RC, Singer TD et al (2005) Salinity acclimation affects the somatotropic axis in rainbow trout. Am J Physiol 288:R1385–R1395

    CAS  Google Scholar 

  • Shrimpton JM, McCormick SD (1998) Regulation of gill cytosolic corticosteroid receptors in juvenile Atlantic salmon: interaction effects of growth hormone with prolactin and triiodothyronine. Gen Comp Endocrinol 112:262–274. doi:10.1006/gcen.1998.7172

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton JM, Devlin RH, Mclean E, Byatt JC, Donaldson EM, Randall DJ (1995) Increases in gill cytosolic corticoidsteroid receptor abundance and saltwater tolerance in juvenile coho salmon (Oncorhynchus kisutch) treated with growth hormone and placental lactogen. Gen Comp Endocrinol 98:1–15. doi:10.1006/gcen.1995.1039

    Article  PubMed  CAS  Google Scholar 

  • Small BC (2005) Effect of fasting on nychthermal concentrations of plasma growth hormone (GH), insulin-like growth factor I (IGF-I), and cortisol in channel catfish (Ictalurus punctatus). Comp Biochem Physiol 142C:217–223

    Google Scholar 

  • Small BC, Soares JH, Woods LC, Dahl GE (2002) Effect of fasting on pituitary growth hormone expression and circulating growth hormone levels in striped bass. N Am J Aquaculture 64:278–283. doi:10.1577/1548-8454(2002)064<0278:EOFOPG>2.0.CO;2

    Article  Google Scholar 

  • Smith DCW (1956) The role of endocrine organs in the salinity tolerance of trout. Mem Soc Endocrinol 5:83–101

    Google Scholar 

  • Snieszko SF (1974) The effects of environmental stress on outbreaks of infectious diseases of fishes. J Fish Biol 6:197–208. doi:10.1111/j.1095-8649.1974.tb04537.x

    Article  Google Scholar 

  • Solomon DJ (1977) A review of chemical communication in freshwater fish. J Fish Biol 11:363–376. doi:10.1111/j.1095-8649.1977.tb04130.x

    Article  CAS  Google Scholar 

  • Stefansson SO, Björnsson BT, Sundell K, Nyhammer G, McCormick SD (2003) Physiological characteristics of wild Atlantic salmon post-smolts during estuarine and coastal migration. J Fish Biol 63:942–955. doi:10.1046/j.1095-8649.2003.00201.x

    Article  CAS  Google Scholar 

  • Stokes K (2003) Growth hormone responses to sub-maximal and sprint exercise. Growth Horm IGF Res 13:225–238. doi:10.1016/S1096-6374(03)00016-9

    Article  PubMed  CAS  Google Scholar 

  • Sumpter JP, Le Bail PY, Pickering AD, Pottinger TG, Carragher JF (1991) The effect of starvation on growth and plasma growth hormone concentrations of rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 83:94–102. doi:10.1016/0016-6480(91)90109-J

    Article  PubMed  CAS  Google Scholar 

  • Sweeting RM, McKeown BA (1987) Growth hormone and seawater adaptation in coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol 89A:147–151. doi:10.1016/0300-9629(87)90113-7

    Article  Google Scholar 

  • Swift DR, Pickford GE (1965) Seasonal variations in the hormone content of the pituitary gland of the perch, Perca fluviatilis L. Gen Comp Endocrinol 5:354–365. doi:10.1016/0016-6480(65)90060-2

    Article  CAS  Google Scholar 

  • Takahashi A, Ogasawara T, Kawauchi H, Hirano T (1991) Effects of stress and fasting on plasma growth hormone levels in the immature rainbow trout. Nippon Suisan Gakkai Shi 57:231–235

    CAS  Google Scholar 

  • Tang Y, Shepherd BS, Nichols AJ, Dunham R, Chen TT (2001) The influence of environmental salinity on messenger RNA levels of growth hormone, prolactin, and somatolactin in pituitary of the channel catfish (Ictalarus punctatus). Mar Biotechnol 3:205–217. doi:10.1007/s101260000061

    Article  PubMed  CAS  Google Scholar 

  • Tine M, De Longeril J, Panfili J, Diop K, Bonhomme F, Durand JD (2007) Growth hormone and prolactin-1 gene transcription in natural populations of the black-chinned tilapia Sarotherodon melanotheron acclimatised to different salinities. Comp Biochem Physiol 147B:541–549

    CAS  Google Scholar 

  • Tsai HJ, Lin KL, Chen TT (1993) Molecular cloning of Yellowfin porgy (Acanthopagrus latus houttuyn) growth hormone cDNA. Comp Biochem Physiol 104B:803–810

    CAS  Google Scholar 

  • Tse DL, Tse MC, Chan CB, Deng L, Zhang WM, Lin HR et al (2003) Seabream growth hormone receptor: molecular cloning and functional studies of the full-length cDNA, and tissue expression of two alternatively spliced forms. Biochim Biophys Acta 1625:64–76

    PubMed  CAS  Google Scholar 

  • Uchida K, Yoshikawa E, Joanne SM, Kajimura S, Yada T, Hirano T et al (2004) In vitro effects of cortisol on the release and gene expression of prolacatin and growth hormone in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 135:116–125. doi:10.1016/j.ygcen.2003.08.010

    Article  PubMed  CAS  Google Scholar 

  • Van Helder WP, Casey K, Radomski MW (1987) Regulation of growth hormone during exercise by oxygen demand and availability. Eur J Appl Physiol 56:628–632. doi:10.1007/BF00424801

    Article  Google Scholar 

  • Varnavsky VS, Sakamoto T, Hirano T (1995) Effects of premature seawater transfer and fasting on plasma growth hormone levels of yearling coho salmon (Oncorhynchus kisutch) parr. Aquaculture 135:141–145. doi:10.1016/0044-8486(95)01001-7

    Article  CAS  Google Scholar 

  • Varsamos S, Xuereb B, Commes T, Flik G, Spannings-Pierrot C (2006) Pitutary hormone mRNA expression in European sea bass Dicentrachus labrax in seawater and following acclimation to fresh water. J Endocrinol 191:473–480. doi:10.1677/joe.1.06847

    Article  PubMed  CAS  Google Scholar 

  • Very NM, Sheridan MA (2007) Somatostatin regulates hepatic growth hormone sensitivity by internalizing growth hormone receptors and by decreasing transcription of growth hormone receptor mRNAs. Am J Physiol 292:R1956–R1962

    CAS  Google Scholar 

  • Very NM, Kittilson JD, Norbeck LA, Sheridan MA (2005) Isolation, characterization and distribution of two cDNAS encoding for growth hormone receptor in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 140B:615–628

    CAS  Google Scholar 

  • Vijayan MM, Morgan JD, Sakamoto T, Grau EG, Iwama GK (1996) Food deprivation affects seawater acclimation in tilapia: hormonal and metabolic changes. J Exp Biol 199:2467–2475

    PubMed  CAS  Google Scholar 

  • Vosyliene MZ, Kazlauskiene N, Svecevicius G (2003) Effect of a heavy metal model mixture on biological parameters of rainbow trout (Oncorhynchus mykiss). Environ Sci Pollut Res Int 10:103–107

    Article  PubMed  CAS  Google Scholar 

  • Walters GR, Plumb JA (1980) Environmental stress and bacterial infection in channel catfish, Ictalarus puntatus Rafinesque. J Fish Biol 17:177–185. doi:10.1111/j.1095-8649.1980.tb02751.x

    Article  Google Scholar 

  • Wargelius A, Fjelldal PG, Benedet S, Hansen T, Björnsson BT, Nordgarden U (2005) A peak in gh-receptor expression is associated with growth activation in Atlantic salmon vertebrae, while upregulation of igf-I receptor expression is related to increased bone density. Gen Comp Endocrinol 142:163–168. doi:10.1016/j.ygcen.2004.12.005

    Article  PubMed  CAS  Google Scholar 

  • Weber GM, Grau EG (1999) Changes in serum concentrations and pituitary content of the two prolactins and growth hormone during the reproductive cycle in female tilapia, Oreochromis mossambicus, compared with changes during fasting. Comp Biochem Physiol 124C:323–335

    CAS  Google Scholar 

  • Wilkinson RJ, Porter M, Woolcott H, Longland R, Carragher JF (2006) Effects of aquaculture related stressors and nutritional restriction on circulating growth factors (GH, IGF-I and IGF-II) in Atlantic salmon and rainbow trout. Comp Biochem Physiol 145A:214–224

    CAS  Google Scholar 

  • Woo NYS (1990) Metabolic and osmoregulatory changes during temperature acclimation in the red sea bream, Chrysophrys major: implications for its culture in the sub-tropics. Aquaculture 87:197–208. doi:10.1016/0044-8486(90)90275-R

    Article  Google Scholar 

  • Woo NYS, Fung ACY (1980) Studies on the biology of red sea bream Chrysophrys major I. Temperature tolerance. Mar Ecol Prog Ser 3:121–124. doi:10.3354/meps003121

    Article  Google Scholar 

  • Woo NYS, Kelly SP (1995) Effects of salinity and nutritional status on growth and metabolism of Sparus sarba in a closed seawater system. Aquaculture 135:229–238. doi:10.1016/0044-8486(95)01003-3

    Article  Google Scholar 

  • Woo NYS, Ng TB, Leung TC, Chow CY (1997) Enhancement of growth of tilapia Oreochromis niloticus in iso-osmotic medium. J Appl Ichthyol 13:67–71

    Article  CAS  Google Scholar 

  • Xu B, Miao H, Zhang P, Li D (1997) Osmoregulatory actions of growth hormone in juvenile tilapia (Oreochromis niloticus). Fish Physiol Biochem 17:295–301. doi:10.1023/A:1007750022878

    Article  CAS  Google Scholar 

  • Yada T, Takahashi K, Hirano T (1991) Seasonal changes in seawater adaptability and plasma levels of prolactin and growth hormone in landlocked sokeye salmon Oncorhynchus nerka and amago salmon Oncorhynchus rhoduras. Gen Comp Endocrinol 82:33–44. doi:10.1016/0016-6480(91)90293-F

    Article  PubMed  CAS  Google Scholar 

  • Yada T, Misumi I, Muto K, Azuma T, Schreck CB (2004) Effects of prolactin and growth hormone on proliferation and survival of cultured trout leucocytes. Gen Comp Endocrinol 136:298–306. doi:10.1016/j.ygcen.2004.01.003

    Article  PubMed  CAS  Google Scholar 

  • Yadetie F, Male R (2002) Effects of 4-nonylphenol on gene expression of pituitary hormones in juvenile Atlantic salmon (Salmo salar). Aquat Toxicol 58:113–129. doi:10.1016/S0166-445X(01)00242-9

    Article  PubMed  CAS  Google Scholar 

  • Yadetie F, Arukwe A, Goksøyr A, Male R (1999) Induction of hepatic estrogen receptor in juvenile Atlantic salmon in vivo by the environmental estrogen, 4-nonylphenol. Sci Total Environ 233:210–210. doi:10.1016/S0048-9697(99)00226-0

    Article  Google Scholar 

  • Yamauchi K, Nishioka RS, Young G, Ogasawara T, Hirano T, Bern HA (1991) Osmoregulation and circulating growth hormone and prolactin levels in hypophysectomized coho salmon (Oncorhynchus kisutch) after transfer to fresh water and sea water. Aquaculture 92:33–42. doi:10.1016/0044-8486(91)90006-S

    Article  CAS  Google Scholar 

  • Yang BY, Chan KM, Lin CM, Chen TT (1997) Characterization of rainbow trout (Oncorhynchus mykiss) growth hormone 1 and the promoter region of growth hormone 2 gene. Arch Biochem Biophys 340:259–368. doi:10.1006/abbi.1997.9930

    Article  Google Scholar 

  • Young G, Björnsson BT, Prunet P, Lin RJ, Bern HA (1989) Smoltification and seawater adaptation in coho salmo (Oncorhynchus kisutch): plasma prolactin, growth hormone, thyroid hormones and cortisol. Gen Comp Endocrinol 74:35–345. doi:10.1016/S0016-6480(89)80029-2

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Earmarked Grants for Research, CUHK4318/03 M and CUHK4583/05 M (Research Grants Council, Hong Kong) awarded to Dr. Norman Y. S Woo and an Area of Excellence Grant (AoE/P-04/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Y. S. Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deane, E.E., Woo, N.Y.S. Modulation of fish growth hormone levels by salinity, temperature, pollutants and aquaculture related stress: a review. Rev Fish Biol Fisheries 19, 97–120 (2009). https://doi.org/10.1007/s11160-008-9091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-008-9091-0

Keywords

Navigation