Skip to main content
Log in

Generation of oxidative radicals by advanced oxidation processes (AOPs) in wastewater treatment: a mechanistic, environmental and economic review

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

In light of the rising presence of contaminants of emerging concern in water streams, in recent decades, advanced oxidation processes have received significant research interest, as the generation of oxidative radicals allows for the effective degradation of recalcitrant compounds. This review paper provides insights into the most relevant generation methods of several oxidative species, with a main emphasis on hydroxyl, sulfate, chlorine and iodine radicals. Understanding the strengths and pitfalls of each generation route is essential to set the baseline for future industrial applications. To this end, this review presents a comprehensive summary of how different techniques result in distinct radical types, and in addition to the principles and mechanisms of formation, the environmental and economic aspects behind the different methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AFT:

Anodic Fenton treatment

AOP(s):

Advanced oxidation process(es)

BDD:

Boron-doped diamond

CDRs:

Chlorine-derived radicals

CECs:

Contaminants of emerging concern

COD:

Chemical oxygen demand

DSAs:

Dimensionally stable anodes

eAOPs:

Electrochemical advanced oxidation processes

EDDS:

[S,S]-Ethylene-diamine-disuccinic acid

EDTA:

Ethylene-diamine-tetra-acetic acid

EE2:

Ethinylestradiol

FCE:

Freeze concentration effect

FFA:

Furfuryl alcohol

GAC:

Granular activated carbon

LGSFY:

Light green SF yellowish

MMO:

Mixed metal oxide

NOM:

Natural organic matter

PDS:

Peroxydisulfate

PFOA:

Perfluorooctanoic acid

PMS:

Peroxymonosulfate

PPCP(s):

Pharmaceuticals and personal care product(s)

RNS:

Reactive nitrogen species

SR-AOP(s):

Sulfate radical-based advanced oxidation process(es)

TN:

Total nitrogen

TOC:

Total organic carbon

UV:

Ultraviolet

WAO:

Wet air oxidation

(n)ZVI:

(nano) Zero-valent ion

References

  • Alalm MG, Tawfik A, Ookawara S (2015) Comparison of solar TiO\(_2\) photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics and costs. J Water Process Eng 8:55–63

    Article  Google Scholar 

  • Alalm MG, Tawfik A, Ookawara S (2015) Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J Environ Chem Eng 3(1):46–51

    Article  CAS  Google Scholar 

  • Alaton IA, Balcioglu IA, Bahnemann DW (2002) Advanced oxidation of a reactive dyebath effluent: comparison of O\(_3\), H\(_2\)O\(_2\)/UV-C and TiO\(_2\)/UV-A processes. Water Res 36(5):1143–1154

    Article  CAS  Google Scholar 

  • Alkhuraiji TS, Boukari SO, Alfadhl FS (2017) Gamma irradiation-induced complete degradation and mineralization of phenol in aqueous solution: effects of reagent. J Hazard Mater 328:29–36

    Article  CAS  Google Scholar 

  • Amadelli R, De Battisti A, Girenko D, Kovalyov S, Velichenko A (2000) Electrochemical oxidation of trans-3,4-dihydroxycinnamic acid at PbO\(_2\) electrodes: direct electrolysis and ozone mediated reactions compared. Electrochim Acta 46(2):341–347

    Article  CAS  Google Scholar 

  • Ameta R, Chohadia K, Jain, A, Punjabi PB (2018) Chapter 3 - Fenton and Photo-Fenton processes. In: Ameta SC, Ameta R (eds) Advanced Oxidation Processes for Waste Water Treatment. Academic Press, pp 49–87

  • Amor C, Marchão L, Lucas MS, Peres JA (2019) Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: a review. Water 11(2):205

    Article  CAS  Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. Emerg Technol 84(12):1747–1755

    CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37(20):4790–4797

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38(13):3705–3712

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2004) Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl Catal B Environ 54(3):155–163

    Article  CAS  Google Scholar 

  • Antonin VS, Santos MC, Garcia-Segura S, Brillas E (2015) Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix. Water Res 83:31–41

    Article  CAS  Google Scholar 

  • Ao X, Liu W (2017) Degradation of sulfamethoxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide. Chem Eng J 313:629–637

    Article  CAS  Google Scholar 

  • Arellano M, Pazos M, Ángeles Sanromán M (2019) Sulfate radicals-based technology as a promising strategy for wastewater. Water 11:1695

    Article  CAS  Google Scholar 

  • Arevalo E, Calmano W (2007) Studies on electrochemical treatment of wastewater contaminated with organotin compounds. J Hazard Mater 146(3):540–545

    Article  CAS  Google Scholar 

  • Arzate S, Pfister S, Oberschelp C, Sánchez-Pérez J (2019) Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Sci Total Environ 694:133572

    Article  CAS  Google Scholar 

  • Ashoori N, Teixido M, Spahr S, LeFevre GH, Sedlak DL, Luthy RG (2019) Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Res 1(154):1–11

    Article  Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572

    Article  CAS  Google Scholar 

  • Balkema AJ, Preisig HA, Otterpohl R, Lambert FJ (2002) Indicators for the sustainability assessment of wastewater treatment systems. Urban Water J 4(2):153–161

    Article  CAS  Google Scholar 

  • Barrera-Díaz C, Cañizares P, Fernández FJ, Natividad R, Rodrigo MA (2014) Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents. J Mex Chem Soc 58:256–275

    Google Scholar 

  • Belghit A, Merouani S, Hamdaoui O, Alghyamah A, Bouhelassa M (2020) Influence of processing conditions on the synergism between UV irradiation and chlorine toward the degradation of refractory organic pollutants in UV/chlorine advanced oxidation system. Sci Total Environ 736:139623

    Article  CAS  Google Scholar 

  • Bendjama H, Merouani S, Hamdaoui O, Bouhelassa M (2018) Efficient degradation method of emerging organic pollutants in marine environment using UV/periodate process: case of chlorazol black. Mar Pollut Bull 126:557–564

    Article  CAS  Google Scholar 

  • Bergmann MH, Rollin J (2007) Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catal Today 124(3):198–203

    Article  CAS  Google Scholar 

  • Boal AK, Rhodes C, Garcia S (2015) Pump-and-treat groundwater remediationusing chlorine/ultraviolet advanced oxidation processes. Ground Water Monit R 35(2):93–100

    Article  CAS  Google Scholar 

  • Boczkaj G, Fernandes A (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J 320:608–633

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H\(_2\)O\(_2\) in advanced oxidation processes. J Hazard Mater 275:121–135

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2015) Singlet-oxygen generation in alkaline periodate solution. Environ Sci Technol 49(24):14392–14400

    Article  CAS  Google Scholar 

  • Boretti A, Rosa L (2019) Reassessing the projections of the world water development report. NPJ Clean Water 2(1):15

    Article  Google Scholar 

  • Bürgi H, Schaffner TH, Seiler JP (2001) The toxicology of iodate: a review of the literature. Thyroid 11(5):449–456

    Article  Google Scholar 

  • Brienza M, Katsoyiannis IA (2017) Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater. Sustainability 9(9):1604

    Article  Google Scholar 

  • Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. an updated review. Appl Catal B Environ 166–167:603–643

    Article  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631

    Article  CAS  Google Scholar 

  • Bu L, Zhou S, Shi Z, Deng L, Gao N (2017) Removal of 2-MIB and geosmin by electrogenerated persulfate: performance, mechanism and pathways. Chemosphere 168:1309–1316

    Article  CAS  Google Scholar 

  • Cai J, Zhou M, Pan Y, Du X, Lu X (2019) Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO\(_2\) nanotubes anode. Appl Catal B Environ 257:117902

    Article  CAS  Google Scholar 

  • Cai W-W, Peng T, Yang B, Xu C, Liu Y-S, Zhao J-L, Gu F-L, Ying G-G (2020) Kinetics and mechanism of reactive radical mediated fluconazole degradation by the UV/chlorine process: experimental and theoretical studies. Chem Eng J 402:126224

    Article  CAS  Google Scholar 

  • Cañizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 90(1):410–420

    Article  Google Scholar 

  • Cañizares P, Sáez C, Sánchez-Carretero A, Rodrigo MA (2009) Synthesis of novel oxidants by electrochemical technology. J Appl Electrochem 39(2143):2143–2149

    Article  Google Scholar 

  • Cako E, Gunasekaran KD, Cheshmeh Soltani RD, Boczkaj G (2020) Ultrafast degradation of brilliant cresyl blue under hydrodynamic cavitation based advanced oxidation processes (AOPs). Water Resour Ind 24:100134

    Article  Google Scholar 

  • Can W, Yao-Kun H, Qing Z, Min J (2014) Treatment of secondary effluent using a three-dimensional electrode system: COD removal, biotoxicity assessment, and disinfection effects. Chem Eng J 243:1–6

    Article  Google Scholar 

  • Canton C, Esplugas S, Casado J (2003) Mineralization of phenol in aqueous solution by ozonation using iron or copper salts and light. Appl Catal B Environ 43(2):139–149

    Article  CAS  Google Scholar 

  • Carter KE, Farrell J (2008) Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes. Environ Sci Technol 42(16):6111–6115

    Article  CAS  Google Scholar 

  • Chakma S, Praneeth S, Moholkar VS (2017) Mechanistic investigations in sono-hybrid (ultrasound/F\(\text{ e}^{2+}\)/UVC) techniques of persulfate activation for degradation of azorubine. Ultrason Sonochem 38:652–663

    Article  CAS  Google Scholar 

  • Chatzisymeon E, Foteinis S, Mantzavinos D, Tsoutsos T (2013) Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment. J Clean Prod 54:229–234

    Article  CAS  Google Scholar 

  • ChemSpider (2021). Ozonide. http://www.chemspider.com/Chemical-Structure.10140300.html

  • Chen L, Lei C, Li Z, Yang B, Zhang X, Lei L (2018) Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants. Chemosphere 210:516–523

    Article  CAS  Google Scholar 

  • Chen X, Oh W-D, Lim T-T (2018) Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms. Chem Eng J 354:941–976

    Article  CAS  Google Scholar 

  • Chen Y, Xie P, Wang Z, Shang R, Wang S (2017) UV/persulfate preoxidation to improve coagulation efficiency of microcystis aeruginosa. J Hazard Mater 322:508–515

    Article  CAS  Google Scholar 

  • Cheng Z, Ling L, Wu Z, Fang J, Westerhoff P, Shang C (2020) Novel visible light-driven photocatalytic chlorine activation process for carbamazepine degradation in drinking water. Environ Sci Technol 54(18):11584–11593

    Article  CAS  Google Scholar 

  • Chiang Y-P, Liang Y-Y, Chang C-N, Chao AC (2006) Differentiating ozone direct and indirect reactions on decomposition of humic substances. Chemosphere 65(11):2395–2400

    Article  CAS  Google Scholar 

  • Cho K, Qu Y, Kwon D, Zhang H, Cid CA, Aryanfar A, Hoffmann MR (2014) Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ Sci Technol 48(4):2377–2384

    Article  CAS  Google Scholar 

  • Choi Y, Yoon H-I, Lee C, Vetráková L, Heger D, Kim K, Kim J (2018) Activation of periodate by freezing for the degradation of aqueous organic pollutants. Environ Sci Technol 52(9):5378–5385

    Article  CAS  Google Scholar 

  • Chong MN, Sharma AK, Burn S, Saint CP (2012) Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. J Clean Prod 35:230–238

    Article  CAS  Google Scholar 

  • Chuang Y-H, Chen S, Chinn CJ, Mitch WA (2017) Comparing the UV/monochloramine and UV/Free chlorine advanced oxidation processes (AOPs) to the UV/Hydrogen peroxide AOP under scenarios relevant to potable reuse. Environ Sci Technol 51(23):13859–13868

    Article  CAS  Google Scholar 

  • Clara VSM, Costa EP, Souza FA, Machado EC, de Araujo JC, Amorim CC (2021) Persulfate mediated solar photo-Fenton aiming at wastewater treatment plant effluent improvement at neutral pH: emerging contaminant removal, disinfection, and elimination of antibiotic-resistant bacteria. Environ Sci Pollut Res 28(14):17355–17368

    Article  Google Scholar 

  • Comninellis C, Chen G (2010) Electrochemistry for the environment, 1st edn. Springer, New York

    Book  Google Scholar 

  • Considine DM, Considine GD (2007) Ozone generation, 8th edn. Springer, USA

    Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    Article  CAS  Google Scholar 

  • Cuerda-Correa EM, Alexandre-Franco MF, Fernández-González C (2020) Advanced oxidation processes for the removal of antibiotics from water: an overview. Water 12(1):55

    Google Scholar 

  • Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Water Pollut 1:167–176

    CAS  Google Scholar 

  • Destaillats H, Colussi AJ, Joseph JM, Hoffmann MR (2000) Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. J Phys Chem A 104(39):8930–8935

    Article  CAS  Google Scholar 

  • Devi P, Das U, Dalai AK (2016) In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Sci Total Environ 571:643–657

    Article  CAS  Google Scholar 

  • Dewil R, Mantzavinos D, Poulios I, Rodrigo MA (2017) New perspectives for advanced oxidation processes. J Environ Manag 195:93–99

    Article  CAS  Google Scholar 

  • Dhaka S, Kumar R, Khan MA, Paeng K-J, Kurade MB, Kim S-J, Jeon B-H (2017) Aqueous phase degradation of methyl paraben using UV-activated persulfate method. Chem Eng J 321:11–19

    Article  CAS  Google Scholar 

  • Divyapriya G, Nidheesh P (2021) Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications. Curr Opin Solid State Mater Sci 25(3):100921

    Article  CAS  Google Scholar 

  • Du J, Tang S, Faheem Ling H, Zheng H, Xiao G, Luo L, Bao J (2019) Insights into periodate oxidation of bisphenol a mediated by manganese. Chem Eng J 369:1034–1039

    Article  CAS  Google Scholar 

  • Du Y, Wang W-L, Zhang D-Y, Zhou T-H, Lee M-Y, Wu Q-Y, Hu H-Y, He Z-M, Huang T-Y (2020) Degradation of non-oxidizing biocide benzalkonium chloride and bulk dissolved organic matter in reverse osmosis concentrate by UV/chlorine oxidation. J Hazard Mater 396:122669

    Article  CAS  Google Scholar 

  • Duan X, He X, Wang D, Mezyk SP, Otto SC, Marfil-Vega R, Mills MA, Dionysiou DD (2017) Decomposition of iodinated pharmaceuticals by UV-254 nm-assisted advanced oxidation processes. J Hazard Mater 323:489–499

    Article  CAS  Google Scholar 

  • Duan X, Sun H, Wang S (2018) Metal-free carbocatalysis in advanced oxidation reactions. Acc Chem Res 51(3):678–687

    Article  CAS  Google Scholar 

  • Duan X, Yang S, Wacławek S, Fang G, Xiao R, Dionysiou DD (2020) Limitations and prospects of sulfate radical-based advanced oxidation processes. J Environ Chem Eng 8(4):103849

    Article  CAS  Google Scholar 

  • European Central Bank (2021). Euro foreign exchnage reference rates. https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/eurofxref-graph-usd.en.html

  • Fang Z, Huang R, How ZT, Jiang B, Chelme-Ayala P, Shi Q, Xu C, Gamal El-Din M (2020) Molecular transformation of dissolved organic matter in process water from oil and gas operation during UV/H\(_2\)O\(_2\), UV/chlorine, and UV/persulfate processes. Sci Total Environ 730:139072

    Article  CAS  Google Scholar 

  • Farhat A, Keller J, Tait S, Radjenovic J (2015) Removal of persistent organic contaminants by electrochemically activated sulfate. Environ Sci Technol 49:14326–14333

    Article  CAS  Google Scholar 

  • Farhat A, Keller J, Tait S, Radjenovic J (2017) Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate. Chem Eng J 330:1265–1271

    Article  CAS  Google Scholar 

  • Farré MJ, García-Montaño J, Ruiz N, Muñoz I, Domènech X, Peral J (2007) Life cycle assessment of the removal of diuron and linuron herbicides from water using three environmentally friendly technologies. Environ Technol 28(7):819–830

    Article  Google Scholar 

  • Fedorov K, Dinesh K, Sun X, Darvishi Cheshmeh Soltani R, Wang Z, Sonawane S, Boczkaj G (2022) Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon– a review. Chem Eng J 432:134191

    Article  CAS  Google Scholar 

  • Fedorov K, Plata-Gryl M, Khan JA, Boczkaj G (2020) Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water. J Hazard Mater 397:122804

    Article  CAS  Google Scholar 

  • Fedorov K, Sun X, Boczkaj G (2021) Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water. Chem Eng J 417:128081

    Article  CAS  Google Scholar 

  • Feijoo S, González-Rodríguez J, Fernández L, Vázquez-Vázquez C, Feijoo G, Moreira MT (2020) Fenton and photo-Fenton nanocatalysts revisited from the perspective of life cycle assessment. Catalysts 10(1):23

    Article  CAS  Google Scholar 

  • Fernandes A, Gagol M, Makoś P, Khan JA, Boczkaj G (2019) Integrated photocatalytic advanced oxidation system (\(\text{ TiO}_2\)/UV/\(\text{ O}_3\)/\(\text{ H}_2\text{ O}_2\)) for degradation of volatile organic compounds. Sep Purif Technol 224:1–14

    Article  CAS  Google Scholar 

  • Fernandes A, Makoś P, Khan JA, Boczkaj G (2019) Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. J Clean Prod 208:54–64

    Article  CAS  Google Scholar 

  • Fernandes A, Makoś P, Wang Z, Boczkaj G (2020) Synergistic effect of \(\text{ TiO}_2\) photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chem Eng J 391:123488

    Article  CAS  Google Scholar 

  • Fischbacher A, Löppenberg K, von Sonntag C, Schmidt TC (2015) A new reaction pathway for bromite to bromate in the ozonation of bromide. Environ Sci Technol 49(19):11714–11720

    Article  CAS  Google Scholar 

  • Foley J, de Haas D, Hartley K, Lant P (2010) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44(5):1654–1666

    Article  CAS  Google Scholar 

  • Foteinis S, Borthwick AG, Frontistis Z, Mantzavinos D, Chatzisymeon E (2018) Environmental sustainability of light-driven processes for wastewater treatment applications. J Clean Prod 182:8–15

    Article  CAS  Google Scholar 

  • Frontistis Z, Xekoukoulotakis NP, Hapeshi E, Venieri D, Fatta-Kassinos D, Mantzavinos D (2011) Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chem Eng J 178:175–182

    Article  CAS  Google Scholar 

  • Gagol M, Cako E, Fedorov K, Soltani RDC, Przyjazny A, Boczkaj G (2020) Hydrodynamic cavitation based advanced oxidation processes: studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants. J Mol Liq 307:113002

    Article  CAS  Google Scholar 

  • Gagol M, Przyjazny A, Boczkaj G (2018) Wastewater treatment by means of advanced oxidation processes based on cavitation–a review. Chem Eng J 338:599–627

    Article  CAS  Google Scholar 

  • Gansäuer A, Bluhm H (2000) Reagent-controlled transition-metal-catalyzed radical reactions. Chem Rev 100(8):2771–2788

    Article  Google Scholar 

  • Gao Y-Q, Gao N-Y, Deng Y, Yang Y-Q, Ma Y (2012) Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem Eng J 195–196:248–253

    Article  Google Scholar 

  • Garcia-Segura S, Keller J, Brillas E, Radjenovic J (2015) Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater 283:551–557

    Article  CAS  Google Scholar 

  • Garcia-Segura S, Ocon JD, Chong MN (2018) Electrochemical oxidation remediation of real wastewater effluents–a review. Process Saf Environ Prot 113:48–67

    Article  CAS  Google Scholar 

  • Garrido-Cardenas J, Esteban-García B, Agüera A, Sánchez-Pérez J, Manzano-Agugliaro F (2020) Wastewater treatment by advanced oxidation process and their worldwide research trends. Int J Environ Res Public Health 17(1):170

    Article  CAS  Google Scholar 

  • Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J 310:41–62

    Article  CAS  Google Scholar 

  • Ghanbari F, Moradi M, Gohari F (2016) Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. J Water Process Eng 9:22–28

    Article  Google Scholar 

  • Giannakis S, Lin KYA, Ghanbari F (2021) A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chem Eng J 406:127083

    Article  CAS  Google Scholar 

  • GilPavas E, Dobrosz-Gómez I, Ángel Gómez-García M (2018) Optimization of solar-driven photo-electro-Fenton process for the treatment of textile industrial wastewater. J Water Process Eng 24:49–55

    Article  Google Scholar 

  • Grannas AM, Bausch AR, Mahanna KM (2007) Enhanced aqueous photochemical reaction rates after freezing. J Phys Chem A 111(43):11043–11049

    Article  CAS  Google Scholar 

  • Guan Y-H, Ma J, Li X-C, Fang J-Y, Chen L-W (2011) Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/Peroxymonosulfate system. Environ Sci Technol 45(21):9308–9314

    Article  CAS  Google Scholar 

  • Guerra-Rodríguez S, Rodríguez E, Singh DN, Rodríguez-Chueca J (2018) Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water 10(12):1828

    Article  Google Scholar 

  • Guo K, Wu Z, Yan S, Yao B, Song W, Hua Z, Zhang X, Kong X, Li X, Fang J (2018) Comparison of the UV/chlorine and UV/H\(_2\)O\(_2\) processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. Water Res 147:184–194

    Article  CAS  Google Scholar 

  • Guo Y, Zhou J, Lou X, Liu R, Xiao D, Fang C, Wang Z, Liu J (2014) Enhanced degradation of tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates. Chem Eng J 254:538–544

    Article  CAS  Google Scholar 

  • Gözmen B, Turabik M, Hesenov A (2009) Photocatalytic degradation of basic red 46 and basic yellow 28 in single and binary mixture by UV/TiO\(_2\)/periodate system. J Hazard Mater 164(2):1487–1495

    Article  Google Scholar 

  • Haddad A, Merouani S, Hannachi C, Hamdaoui O, Hamrouni B (2019) Intensification of light green SF yellowish (LGSFY) photodegradation in water by iodate ions: iodine radicals implication in the degradation process and impacts of water matrix components. Sci Total Environ 652:1219–1227

    Article  Google Scholar 

  • Hamdaoui O, Merouani S (2017) Improvement of sonochemical degradation of Brilliant blue R in water using periodate ions: implication of iodine radicals in the oxidation process. Ultrason Sonochem 37:344–350

    Article  CAS  Google Scholar 

  • Han Z, Li J, Han X, Ji X, Zhao X (2019) A comparative study of iron-based PAN fibrous catalysts for peroxymonosulfate activation in decomposing organic contaminants. Chem Eng J 358:176–187

    Article  CAS  Google Scholar 

  • He S, Chen Y, Li X, Zeng L, Zhu M (2022) Heterogeneous photocatalytic activation of persulfate for the removal of organic contaminants in water: a critical review. ACS ES &T Eng 2(4):527–546

    Article  CAS  Google Scholar 

  • He X, de la Cruz AA, Dionysiou DD (2013) Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J Photochem Photobiol A 251:160–166

    Article  CAS  Google Scholar 

  • He Z, Song S, Ying H, Xu L, Chen J (2007) p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism. Ultrason Sonochem 14(5):568–574

    Article  CAS  Google Scholar 

  • Heger D, Jirkovský J, Klán P (2005) Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy. J Phys Chem A 109(30):6702–6709

    Article  CAS  Google Scholar 

  • Heger D, Klánová J, Klán P (2006) Enhanced protonation of cresol red in acidic aqueous solutions caused by freezing. J Phys Chem B 110(3):1277–1287

    Article  CAS  Google Scholar 

  • Herrero O, Pérez Martín J, Fernández Freire P, Carvajal López L, Peropadre A, Hazen M (2012) Toxicological evaluation of three contaminants of emerging concern by use of the Allium cepa test. Mutat Res Genet Toxicol Environ Mutagen 743(1):20–24

    Article  CAS  Google Scholar 

  • Herrmann H (2007) On the photolysis of simple anions and neutral molecules as sources of O\(^-\)/OH, SO\(\text{ x}^-\) and Cl in aqueous solution. Phys Chem Chem Phys 9:3935–3964

    Article  CAS  Google Scholar 

  • Hoigné J (1988) The Chemistry of Ozone in Water. Springer, Boston, pp 121–141

    Google Scholar 

  • Hoigné J (1998) Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. Springer, Berlin, Heidelberg, pp 83–141

    Google Scholar 

  • Honarmandrad Z, Sun X, Wang Z, Naushad M, Boczkaj G (2023) Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation–a review. Water Resour Ind 29:100194

    Article  CAS  Google Scholar 

  • House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62(3):185–203

    Article  CAS  Google Scholar 

  • Hsueh C, Huang Y, Wang C, Chen C (2005) Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58(10):1409–1414

    Article  CAS  Google Scholar 

  • Hu P, Long M (2016) Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B Environ 181:103–117

    Article  CAS  Google Scholar 

  • Huang B, Wu Z, Zhou H, Li J, Zhou C, Xiong Z, Pan Z, Yao G, Lai B (2021) Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J Hazard Mater 412:125253

    Article  CAS  Google Scholar 

  • Huang N, Wang T, Wang W-L, Wu Q-Y, Li A, Hu H-Y (2017) UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: synergistic effect, transformation products and toxicity evaluation. Water Res 114:246–253

    Article  CAS  Google Scholar 

  • Ike IA, Linden KG, Orbell JD, Duke M (2018) Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem Eng J 338:651–669

    Article  CAS  Google Scholar 

  • Ike IA, Orbell JD, Duke M (2018) Activation of persulfate at waste heat temperatures for humic acid degradation. ACS Sustain Chem Eng 6(3):4345–4353

    Article  CAS  Google Scholar 

  • Ismail L, Ferronato C, Fine L, Jaber F, Chovelon J-M (2017) Elimination of sulfaclozine from water with \(\text{ SO}_{4}^{\bullet -}\) radicals: evaluation of different persulfate activation methods. Appl Catal B Environ 201:573–581

    Article  CAS  Google Scholar 

  • Jawad A, Li Y, Lu X, Chen Z, Liu W, Yin G (2015) Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. J Hazard Mater 289:165–173

    Article  CAS  Google Scholar 

  • Ji Y, Bai J, Li J, Luo T, Qiao L, Zeng Q, Zhou B (2017) Highly selective transformation of ammonia nitrogen to N\(_2\) based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Res 125:512–519

    Article  CAS  Google Scholar 

  • Jiang C, Jia J, Zhai S (2014) Mechanistic understanding of toxicity from nanocatalysts. Int J Mol Sci 15(8):13967–13992

    Article  CAS  Google Scholar 

  • Jiménez S, Andreozzi M, Micó MM, Álvarez MG, Contreras S (2019) Produced water treatment by advanced oxidation processes. Sci Total Environ 666:12–21

    Article  Google Scholar 

  • Joshi A, Locke B, Arce P, Finney W (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41(1):3–30

    Article  CAS  Google Scholar 

  • Jung YJ, Baek KW, Oh BS, Kang J-W (2010) An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and reactive oxygen species and the results of kinetic studies. Water Res 44(18):5345–5355

    Article  CAS  Google Scholar 

  • Kang J-W, Hoffmann MR (1998) Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone. Environ Sci Technol 32(20):3194–3199

    Article  CAS  Google Scholar 

  • Kang Y-G, Yoon H, Lee W, Kim E, Chang Y-S (2018) Comparative study of peroxide oxidants activated by nZVI: removal of 1,4-dioxane and arsenic(III) in contaminated waters. Chem Eng J 334:2511–2519

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Canonica S, von Gunten U (2011) Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O\(_3\)/H\(_2\)O\(_2\) and UV/H\(_2\)O\(_2\). Water Res 45(13):3811–3822

    Article  CAS  Google Scholar 

  • Khan AU, Kasha M (1994) Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: application to studies on the deleterious health effects of chlorinated drinking water. Proc Natl Acad Sci USA 91(26):12362–12364

    Article  CAS  Google Scholar 

  • Khan JA, Sayed M, Shah NS, Khan S, Zhang Y, Boczkaj G, Khan HM, Dionysiou DD (2020) Synthesis of eosin modified \(\text{ TiO}_2\) film with co-exposed 001 and 101 facets for photocatalytic degradation of para-aminobenzoic acid and solar \(\text{ H}_2\) production. Appl Catal B Environ 265:118557

    Article  CAS  Google Scholar 

  • Kidak R, Ince N (2007) Catalysis of advanced oxidation reactions by ultrasound: a case study with phenol. J Hazard Mater 146(3):630–635

    Article  CAS  Google Scholar 

  • Kim C, Ahn J-Y, Kim TY, Shin WS, Hwang I (2018) Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI. Environ Sci Technol 52(6):3625–3633

    Article  CAS  Google Scholar 

  • Kim I, Yamashita N, Tanaka H (2009) Performance of UV and UV/H\(_2\)O\(_2\) processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater 166(2):1134–1140

    Article  CAS  Google Scholar 

  • Kim J, Lee C, Yoon J (2018) Electrochemical peroxodisulfate (PDS) generation on a self-doped TiO\(_2\) nanotube array electrode. Ind Eng Chem Res 57(33):11465–11471

    Article  CAS  Google Scholar 

  • Kim J-G, Yousef AE, Dave S (1999) Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot 62(9):1071–1087

    Article  CAS  Google Scholar 

  • Kläning UK, Sehested K (1978) Photolysis of periodate and periodic acid in aqueous solution. J Chem Soc Faraday Trans 74:2818–2838

    Article  Google Scholar 

  • Kläning UK, Sehested K, Wolff T (1981) Laser flash photolysis and pulse radiolysis of iodate and periodate in aqueous solution. properties of iodine(VI). J Chem Soc Faraday Trans 77:1707–1718

    Article  Google Scholar 

  • Kong X, Thomson ES, Papagiannakopoulos P, Johansson SM, Pettersson JBC (2014) Water accommodation on ice and organic surfaces: insights from environmental molecular beam experiments. J Phys Chem B 118(47):13378–13386

    Article  CAS  Google Scholar 

  • Krichevskaya M, Klauson D, Portjanskaja E, Preis S (2011) The cost evaluation of advanced oxidation processes in laboratory and pilot-scale experiments. Ozone Sci Eng 33(3):211–223

    Article  CAS  Google Scholar 

  • Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Toxicity and carcinogenicity of potassium bromate–a new renal carcinogen. Environ Health Persp 87:309–335

    CAS  Google Scholar 

  • Lado Ribeiro AR, Moreira NFF, Li Puma G, Silva AMT (2019) Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem Eng J 363:155–173

    Article  CAS  Google Scholar 

  • Lee H, Yoo H-Y, Choi J, Nam I-H, Lee S, Lee S, Kim J-H, Lee C, Lee J (2014) Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles. Environ Sci Technol 48(14):8086–8093

    Article  CAS  Google Scholar 

  • Lee J, von Gunten U, Kim J-H (2020) Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol 54(6):3064–3081

    Article  CAS  Google Scholar 

  • Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  Google Scholar 

  • Lee Y-C, Chen M-J, Huang C-P, Kuo J, Lo S-L (2016) Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrason Sonochem 31:499–505

    Article  CAS  Google Scholar 

  • Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans–a review of the potential sources and systemic health effects. Toxicology 387:43–56

    Article  CAS  Google Scholar 

  • Li B, Wang Y-F, Zhang L, Xu H-Y (2022) Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: a review. Chemosphere 291:132954

    Article  CAS  Google Scholar 

  • Li G, He J, Wang D, Meng P, Zeng M (2015) Optimization and interpretation of O\(_3\) and O\(_3\)/H\(_2\)O\(_2\) oxidation processes to pretreat hydrocortisone pharmaceutical wastewater. Environ Technol 36(8):1026–1034

    Article  CAS  Google Scholar 

  • Li X, Liu X, Lin C, Qi C, Zhang H, Ma J (2017) Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation. Chemosphere 181:609–618

    Article  CAS  Google Scholar 

  • Li Y, Wang X, Butler D, Liu J, Qu J (2017) Energy use and carbon footprints differ dramatically for diverse wastewater-derived carbonaceous substrates: an integrated exploration of biokinetics and life-cycle assessment. Sci Rep 7:243

    Article  Google Scholar 

  • Liang C, Bruell CJ (2008) Thermally activated persulfate oxidation of trichloroethylene: experimental investigation of reaction orders. Ind Eng Chem Res 47(9):2912–2918

    Article  CAS  Google Scholar 

  • Liang C, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE I. activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55(9):1213–1223

    Article  CAS  Google Scholar 

  • Liang C, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in-situ remediation of TCE II activated by chelated ferrous ion. Chemosphere 55(9):1225–1233

    Article  CAS  Google Scholar 

  • Liang T, Magers DB, Raston PL, Allen WD, Douberly GE (2013) Dipole moment of the HOOO radical: resolution of a structural enigma. J Phys Chem Lett 4(21):3584–3589

    Article  CAS  Google Scholar 

  • Liao C-H, Gurol MD (1995) Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environ Sci Technol 29(12):3007–3014

    Article  CAS  Google Scholar 

  • Lin D, Fu Y, Li X, Wang L, Hou M, Hu D, Li Q, Zhang Z, Xu C, Qiu S, Wang Z, Boczkaj G (2022) Application of persulfate-based oxidation processes to address diverse sustainability challenges: a critical review. J Hazard Mater 440:129722

    Article  CAS  Google Scholar 

  • Lin H, Wu J, Zhang H (2013) Degradation of bisphenol A in aqueous solution by a novel electro/\(\text{ Fe}^{3+}\)/peroxydisulfate process. Sep Purif Technol 117:18–23

    Article  CAS  Google Scholar 

  • Lin Y-T, Liang C, Chen J-H (2011) Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82(8):1168–1172

    Article  CAS  Google Scholar 

  • Loos G, Scheers T, Van Eyck K, Van Schepdael A, Adams E, Van der Bruggen B, Cabooter D, Dewil R (2018) Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Sep Purif Technol 195:184–191

    Article  CAS  Google Scholar 

  • Luo C, Jiang J, Ma J, Pang S, Liu Y, Song Y, Guan C, Li J, Jin Y, Wu D (2016) Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: kinetics, products, and pathways. Water Res 96:12–21

    Article  CAS  Google Scholar 

  • Lutze HV, Bakkour R, Kerlin N, von Sonntag C, Schmidt TC (2014) Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression by dissolved organic matter. Water Res 53:370–377

    Article  CAS  Google Scholar 

  • Lutze HV, Kerlin N, Schmidt TC (2015) Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water Res 72:349–360

    Article  CAS  Google Scholar 

  • Macías-Quiroga IF, Henao-Aguirre PA, Marín-Flórez A, Arredondo-López SM, Sanabria-González NR (2020) Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environ Sci Pollut Res 28:23791–23811

    Article  Google Scholar 

  • Mahapatra K, Ramteke D, Paliwal L (2012) Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. J Anal Appl Pyrolysis 95:79–86

    Article  CAS  Google Scholar 

  • Mailloux R (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 141:381–398

    Article  Google Scholar 

  • Maktabifard M, Zaborowska E, Makinia J (2020) Energy neutrality versus carbon footprint minimization in municipal wastewater treatment plants. Bioresour Technol 300:122647

    Article  CAS  Google Scholar 

  • Malato-Rodríguez S (2004) Solar detoxification and disinfection. In: Cleveland CJ (ed) Encyclopedia of Energy. Elsevier, New York, pp 587–596

    Chapter  Google Scholar 

  • Martí E, Riera JL, Sabater F (2010) Effects of wastewater treatment plants on stream nutrient dynamics under water scarcity conditions. Springer, Berlin, Heidelberg, pp 173–195

    Google Scholar 

  • Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340

    Article  Google Scholar 

  • Masschelein WJ (1998) Ozone generation: use of air, oxygen or air simpsonized with oxygen. Ozone Sci Eng 20(3):191–203

    Article  CAS  Google Scholar 

  • Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188

    Article  CAS  Google Scholar 

  • Mecha AC, Chollom MN (2020) Photocatalytic ozonation of wastewater: a review. Environ Chem Lett 18:1491–1507

    Article  CAS  Google Scholar 

  • Mecha AC, Onyango MS, Ochieng A, Momba MN (2017) Ultraviolet and solar photocatalytic ozonation of municipal wastewater: catalyst reuse, energy requirements and toxicity assessment. Chemosphere 186:669–676

    Article  CAS  Google Scholar 

  • Mehrjouei M, Müller S, Möller D (2014) Energy consumption of three different advanced oxidation methods for water treatment: a cost-effectiveness study. J Clean Prod 65:178–183

    Article  CAS  Google Scholar 

  • Milh H, Schoenaers B, Stesmans A, Cabooter D, Dewil R (2020) Degradation of sulfamethoxazole by heat-activated persulfate oxidation: elucidation of the degradation mechanism and influence of process parameters. Chem Eng J 379:122234

    Article  CAS  Google Scholar 

  • Minakata D, Kamath D, Maetzold S (2017) Mechanistic insight into the reactivity of chlorine-derived radicals in the aqueous-phase UV-Chlorine advanced oxidation process: quantum mechanical calculations. Environ Sci Technol 51(12):6918–6926

    Article  CAS  Google Scholar 

  • Moad G, Solomon DH (1989) 8 - Azo and Peroxy Initiators. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 97–121

    Chapter  Google Scholar 

  • Mohammadi AS, Asgari G, Poormohammadi A, Ahmadian M (2016) Oxidation of phenol from synthetic wastewater by a novel advanced oxidation process: microwave-assisted periodate. J Sci Ind Res 75(4):267–272

    CAS  Google Scholar 

  • Morone A, Mulay P, Kamble SP (2019) 8-Removal of pharmaceutical and personal care products from wastewater using advanced materials. In: Prasad MNV, Vithanage M, Kapley A (eds) Pharmaceuticals and personal care products: waste management and treatment technology. Butterworth-Heinemann, Massachusetts, pp 173–212

    Chapter  Google Scholar 

  • Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manag 88(3):437–447

    Article  CAS  Google Scholar 

  • Muñoz I, Rieradevall J, Torrades F, Peral J, Domènech X (2005) Environmental assessment of different solar driven advanced oxidation processes. Sol Energy 79(4):369–375

    Article  Google Scholar 

  • Muñoz I, Rodríguez A, Rosal R, Fernández-Alba AR (2009) Life cycle assessment of urban wastewater reuse with ozonation as tertiary treatment: a focus on toxicity-related impacts. Sci Total Environ 407(4):1245–1256

    Article  Google Scholar 

  • Nakano Y, Okawa K, Nishijima W, Okada M (2003) Ozone decomposition of hazardous chemical substance in organic solvents. Water Res 37(11):2595–2598

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17(3):1027–1284

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1):33–50

    Article  CAS  Google Scholar 

  • Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5(51):40552–40577

    Article  CAS  Google Scholar 

  • Nikravesh B, Shomalnasab A, Nayyer A, Aghababaei N, Zarebi R, Ghanbari F (2020) UV/Chlorine process for dye degradation in aqueous solution: mechanism, affecting factors and toxicity evaluation for textile wastewater. J Environ Chem Eng 8(5):104244

    Article  CAS  Google Scholar 

  • O’Dowd K, Pillai SC (2020) Photo-Fenton disinfection at near neutral pH: process, parameter optimization and recent advances. J Environ Chem Eng 8(5):104063

    Article  Google Scholar 

  • Oh S-Y, Kim H-W, Park J-M, Park H-S, Yoon C (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, \(\text{ Fe}^{2+}\), and zero-valent iron. J Hazard Mater 168(1):346–351

    Article  CAS  Google Scholar 

  • Oh W-D, Dong Z, Lim T (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl Catal B Environ 194:169–201

    Article  CAS  Google Scholar 

  • Oh W-D, Lim T-T (2019) Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: an overview. Chem Eng J 358:110–133

    Article  CAS  Google Scholar 

  • Olvera-Vargas H, Oturan N, Oturan MA, Brillas E (2015) Electro-Fenton and solar photoelectro-Fenton treatments of the pharmaceutical ranitidine in pre-pilot flow plant scale. Sep Purif Technol 146:127–135

    Article  CAS  Google Scholar 

  • Oturan N, Oturan MA (2018) Chapter 8 - Electro-Fenton Process: Background, New Developments and Applications. In: Martínez-Huitle CA, Rodrigo MA, Scialdone O (eds) Electrochemical water and wastewater treatment. Butterworth-Heinemann, Massachusetts, pp 193–221

    Chapter  Google Scholar 

  • Palansooriya KN, Yang Y, Tsang YF, Sarkar B, Hou D, Cao X, Meers E, Rinklebe J, Kim K-H, Ok YS (2020) Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review. Crit Rev Environ Sci Technol 50(6):549–611

    Article  CAS  Google Scholar 

  • Pan Y, Cheng S, Yang X, Ren J, Fang J, Shang C, Song W, Lian L, Zhang X (2017) UV/chlorine treatment of carbamazepine: transformation products and their formation kinetics. Water Res 116:254–265

    Article  CAS  Google Scholar 

  • Pardieck DL, Bouwer EJ, Stone AT (1992) Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review. J Contam Hydrol 9(3):221–242

    Article  CAS  Google Scholar 

  • Paul J, Naik DB, Bhardwaj YK, Varshney L (2014) Studies on oxidative radiolysis of ibuprofen in presence of potassium persulfate. Radiat Phys Chem 100:38–44

    Article  CAS  Google Scholar 

  • Peleyeju MG, Arotiba OA (2018) Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater. Environ Sci Water Res Technol 4:1389–1411

    Article  CAS  Google Scholar 

  • Pesqueira JF, Pereira MFR, Silva AM (2020) Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: a review. J Clean Prod 261:121078

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84

    Article  CAS  Google Scholar 

  • Pinedo Escobar JA, Moctezuma E, Serrano Rosales B (2020) Heterojunctions for photocatalytic wastewater treatment: positive holes, hydroxyl radicals and activation mechanism under UV and visible light. Int J Chem React Eng 18(7):20190159

    CAS  Google Scholar 

  • Pirkarami A, Olya ME, Raeis Farshid S (2014) UV/Ni-\(\text{ TiO}_{2}\) nanocatalyst for electrochemical removal of dyes considering operating costs. Water Resour Ind 5:9–20

    Article  Google Scholar 

  • Popiel S, Nalepa T, Dzierżak D, Stankiewicz R, Witkiewicz Z (2009) Rate of dibutylsulfide decomposition by ozonation and the O\(_3\)/H\(_2\)O\(_2\) advanced oxidation process. J Hazard Mater 164(2):1364–1371

    Article  CAS  Google Scholar 

  • Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2009) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204

    Article  Google Scholar 

  • Premarathna K, Rajapaksha AU, Sarkar B, Kwon EE, Bhatnagar A, Ok YS, Vithanage M (2019) Biochar-based engineered composites for sorptive decontamination of water: a review. Chem Eng J 372:536–550

    Article  CAS  Google Scholar 

  • Prieto-Rodríguez L, Oller I, Klamerth N, Agüera A, Rodríguez E, Malato S (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47(4):1521–1528

    Article  Google Scholar 

  • Priyadarshini M, Das I, Ghangrekar MM, Blaney L (2022) Advanced oxidation processes: performance, advantages, and scale-up of emerging technologies. J Environ Manag 316:115295

    Article  CAS  Google Scholar 

  • PubChem (2021). Hydroperoxyl radical. https://pubchem.ncbi.nlm.nih.gov/compound/Hydroperoxy-radical

  • Pulat E, Etemoglu A, Can M (2009) Waste-heat recovery potential in Turkish textile industry: case study for city of Bursa. Renew Sustain Energy Rev 13(3):663–672

    Article  Google Scholar 

  • Radjenovic J, Petrovic M (2016) Sulfate-mediated electrooxidation of X-ray contrast media on boron-doped diamond anode. Water Res 94:128–135

    Article  CAS  Google Scholar 

  • Radjenovic J, Petrovic M (2017) Removal of sulfamethoxazole by electrochemically activated sulfate: implications of chloride addition. J Hazard Mater 333:242–249

    Article  CAS  Google Scholar 

  • Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 49(19):11292–11302

    Article  CAS  Google Scholar 

  • Rastogi A, Al-Abed SR, Dionysiou DD (2009) Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B Environ 85(3):171–179

    Article  CAS  Google Scholar 

  • Raviv M, Antignus Y (2004) UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol 79(3):219–226

    Article  CAS  Google Scholar 

  • Rayaroth MP, Aravindakumar CT, Shah NS, Boczkaj G (2022) Advanced oxidation processes (AOPs) based wastewater treatment–unexpected nitration side reactions-a serious environmental issue: A review. Chem Eng J 430:133002

    Article  CAS  Google Scholar 

  • Rezaeivalla M (2006) Sodium periodate (NaIO\(_4\))–a versatile reagent in organic synthesis. Synlett 20:3550–3551

    Article  Google Scholar 

  • Ribeiro JP, Marques CC, Portugal I, Nunes MI (2020) AOX removal from pulp and paper wastewater by Fenton and photo-Fenton processes: a real case-study. Energy Rep 6:770–775

    Article  Google Scholar 

  • Robl S, Wörner M, Maier D, Braun AM (2012) Formation of hydrogen peroxide by VUV-photolysis of water and aqueous solutions with methanol. Photochem Photobiol Sci 11:1041–1050

    Article  CAS  Google Scholar 

  • Rodríguez R, Espada J, Pariente M, Melero J, Martínez F, Molina R (2016) Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater. J Clean Prod 124:21–29

    Article  Google Scholar 

  • Rodriguez S, Vasquez L, Costa D, Romero A, Santos A (2014) Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 101:86–92

    Article  CAS  Google Scholar 

  • Saeli M, Tobaldi DM, Seabra MP, Labrincha JA (2019) Mix design and mechanical performance of geopolymeric binders and mortars using biomass fly ash and alkaline effluent from paper-pulp industry. J Clean Prod 208:1188–1197

    Article  CAS  Google Scholar 

  • Salmerón I, Oller I, Malato S (2020) Electro-oxidation process assisted by solar energy for the treatment of wastewater with high salinity. Sci Total Environ 705:135831

    Article  Google Scholar 

  • Scaria J, Nidheesh PV (2022) Comparison of hydroxyl-radical-based advanced oxidation processes with sulfate radical-based advanced oxidation processes. Curr Opin Chem Eng 36:100830

    Article  Google Scholar 

  • Schlichter B, Mavrov V, Chmiel H (2004) Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for drinking water production from surface water. Desalination 168:307–317

    Article  CAS  Google Scholar 

  • Schmitz KS (2017) Chapter 15 - Reaction Rates and Mechanisms. In: Schmitz KS (ed) Physical chemistry. Elsevier, Boston, pp 695–760

    Chapter  Google Scholar 

  • Scialdone O, Guarisco C, Galia A (2011) Oxidation of organics in water in microfluidic electrochemical reactors: theoretical model and experiments. Electrochim Acta 58:463–473

    Article  CAS  Google Scholar 

  • Seibert D, Zorzo CF, Borba FH, de Souza RM, Quesada HB, Bergamasco R, Baptista AT, Inticher JJ (2020) Occurrence, statutory guideline values and removal of contaminants of emerging concern by electrochemical advanced oxidation processes: a review. Sci Total Environ 748:141527

    Article  CAS  Google Scholar 

  • Seid-Mohamadi A, Asgari G, Shokoohi R, Adabi S (2015) Phenol disgrace via periodate in integrating by using supersonic radiation. J Med Life 8(3):233–237

    CAS  Google Scholar 

  • Seid-Mohammadi A, Asgari G, Shokoohi R, Baziar M, Mirzaei N, Adabi S, Partoei K (2019) Degradation of phenol using US/Periodate/nZVI system from aqueous solutions. Glob Nest J 21(3):360–367

    CAS  Google Scholar 

  • Serra A, Domènech X, Brillas E, Peral J (2011) Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous alpha-methylphenylglycine. J Environ Monit 13:167–174

    Article  CAS  Google Scholar 

  • Serrano K, Michaud P, Comninellis C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim Acta 48(4):431–436

    Article  CAS  Google Scholar 

  • Shah NS, Rizwan AD, Khan JA, Sayed M, Khan ZUH, Murtaza B, Iqbal J, Din SU, Imran M, Nadeem M, Al-Muhtaseb AH, Muhammad N, Khan HM, Ghauri M, Zaman G (2018) Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H\(_2\)O\(_2\) based advanced oxidation processes. Process Saf Environ 117:473–482

    Article  CAS  Google Scholar 

  • Sharma K, Dutta V, Sharma S, Raizada P, Hosseini-Bandegharaei A, Thakur P, Singh P (2019) Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J Ind Eng Chem 78:1–20

    Article  Google Scholar 

  • Sharpe AG (1992) Inorganic chemistry, 3rd edn. Longman Scientific and Technical, London

    Google Scholar 

  • Shemer H, Narkis N (2005) Trihalomethanes aqueous solutions sono-oxidation. Water Res 39(12):2704–2710

    Article  CAS  Google Scholar 

  • Sigma Aldrich (2020). OXONE®, monopersulfate compound. https://www.sigmaaldrich.com/catalog/product/sial/228036?lang=en &region=BE

  • Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ Int 40:212–229

    Article  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow a review. Environ Sci Pollut Res 21:8336–8367

    Article  Google Scholar 

  • Soltani RDC, Mashayekhi M, Naderi M, Boczkaj G, Jorfi S, Safari M (2019) Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst. Ultrason Sonochem 55:117–124

    Article  CAS  Google Scholar 

  • Soltani RDC, Miraftabi Z, Mahmoudi M, Jorfi S, Boczkaj G, Khataee A (2019) Stone cutting industry waste-supported zinc oxide nanostructures for ultrasonic assisted decomposition of an anti-inflammatory non-steroidal pharmaceutical compound. Ultrason Sonochem 58:104669

    Article  CAS  Google Scholar 

  • Song H, Yan L, Jiang J, Ma J, Zhang Z, Zhang J, Liu P, Yang T (2018) Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation? Water Res 128:393–401

    Article  CAS  Google Scholar 

  • Soumia F, Petrier C (2016) Effect of potassium monopersulfate (oxone) and operating parameters on sonochemical degradation of cationic dye in an aqueous solution. Ultrason Sonochem 32:343–347

    Article  CAS  Google Scholar 

  • Srinivasan A, Thiruvenkatachari V (2009) Perchlorate: health effects and technologies for its removal from water resources. Int J Environ Res Public Health 6(4):1418–1442

    Article  CAS  Google Scholar 

  • Särkkä H, Bhatnagar A, Sillanpää M (2015) Recent developments of electro-oxidation in water treatment–a review. J Electroanal Chem 754:46–56

    Article  Google Scholar 

  • Steffen C, Wetzel E (1993) Chlorate poisoning: mechanism of toxicity. Toxicology 84(1):217–231

    Article  CAS  Google Scholar 

  • Steter JR, Brillas E, Sirés I (2018) Solar photoelectro-Fenton treatment of a mixture of parabens spiked into secondary treated wastewater effluent at low input current. Appl Catal B Environ 224:410–418

    Article  CAS  Google Scholar 

  • Suhan MBK, Shuchi SB, Anis A, Haque Z, Islam MS (2020) Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: kinetics and cost analysis. Environ Nanotechnol Monit Manag 14:100335

    Google Scholar 

  • Summerfelt ST (2003) Ozonation and UV irradiation–an introduction and examples of current applications. Aquac Eng 28(1):21–36

    Article  Google Scholar 

  • Tadda M, Ahsan A, Shitu A, ElSergany M, Arunkumar T, Jose B, Razzaque MA, Daud NN (2016) A review on activated carbon: process, application and prospects. JACEPR 2(1):7–13

    Google Scholar 

  • Takenaka N, Bandow H (2007) Chemical kinetics of reactions in the unfrozen solution of ice. J Phys Chem A 111(36):8780–8786

    Article  CAS  Google Scholar 

  • Tan C, Dong Y, Fu D, Gao N, Ma J, Liu X (2018) Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: kinetics and mechanism of radical generation. Chem Eng J 334:1006–1015

    Article  CAS  Google Scholar 

  • Tan C, Gao N, Zhou S, Xiao Y, Zhuang Z (2014) Kinetic study of acetaminophen degradation by UV-based advanced oxidation processes. Chem Eng J 253:229–236

    Article  CAS  Google Scholar 

  • Tang T, Lu G, Wang R, Qiu Z, Huang K, Lian W, Tao X, Dang Z, Yin H (2019) Rate constants for the reaction of hydroxyl and sulfate radicals with organophosphorus esters (OPEs) determined by competition method. Ecotox Environ Safe 170:300–305

    Article  CAS  Google Scholar 

  • Tezcanli-Güyer G, Ince N (2004) Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42(1):603–609

    Article  Google Scholar 

  • Thomas N, Dionysiou DD, Pillai SC (2021) Heterogeneous Fenton catalysts: a review of recent advances. J Hazard Mater 404:124082

    Article  CAS  Google Scholar 

  • Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions–a review. Water Res 133:182–207

    Article  CAS  Google Scholar 

  • Tröster I, Fryda M, Herrmann D, Schäfer L, Hänni W, Perret A, Blaschke M, Kraft A, Stadelmann M (2002) Electrochemical advanced oxidation process for water treatment using DiaChem® electrodes. Diam Relat Mater 11(3):640–645

    Article  Google Scholar 

  • Turan-Ertas T, Gurol MD (2002) Oxidation of diethylene glycol with ozone and modified Fenton processes. Chemosphere 47(3):293–301

    Article  CAS  Google Scholar 

  • Urtiaga A, Gómez P, Arruti A, Ortiz I (2014) Electrochemical removal of tetrahydrofuran from industrial wastewaters: anode selection and process scale-up. J Chem Technol Biotechnol 89:1243–1250

    Article  CAS  Google Scholar 

  • Ushani U, Lu X, Wang J, Zhang Z, Dai J, Tan Y, Wang S, Li W, Niu C, Cai T, Wang N, Zhen G (2020) Sulfate radicals-based advanced oxidation technology in various environmental remediation: a state-of-the-art review. Chem Eng J 402:126232

    Article  CAS  Google Scholar 

  • Vasquez-Medrano R, Prato-Garcia D, Vedrenne M (2018) Chapter 4 - Ferrioxalate-mediated processes. In: Ameta SC, Ameta R (eds) Advanced oxidation processes for waste water treatment. Academic Press, Massachusetts, pp 89–113

    Chapter  Google Scholar 

  • Vidal-Dorsch DE, Bay SM, Maruya K, Snyder SA, Trenholm RA, Vanderford BJ (2012) Contaminants of emerging concern in municipal wastewater effluents and marine receiving water. Environ Toxicol Chem 31(12):2674–2682

    Article  CAS  Google Scholar 

  • Vithanage M, Herath I, Joseph S, Bundschuh J, Bolan N, Ok YS, Kirkham M, Rinklebe J (2017) Interaction of arsenic with biochar in soil and water: a critical review. Carbon 113:219–230

    Article  CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41:1010–1015

    Article  CAS  Google Scholar 

  • Wang H, Yang Y, Keller AA, Li X, Feng S, Dong Y-N, Li F (2016) Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Appl Energ 184:873–881

    Article  CAS  Google Scholar 

  • Wang J, Chen H (2020) Catalytic ozonation for water and wastewater treatment: recent advances and perspectives. Sci Total Environ 704:135249

    Article  CAS  Google Scholar 

  • Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517

    Article  CAS  Google Scholar 

  • Wang J, Zhuan R (2020) Degradation of antibiotics by advanced oxidation processes: an overview. Sci Total Environ 701:135023

    Article  CAS  Google Scholar 

  • Wang LK, Hung Y-T, Shammas NK (2005) Physicochemical treatment processes, vol 3. Springer, Cham

    Book  Google Scholar 

  • Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4(1):762–787

    Article  CAS  Google Scholar 

  • Wang S (2008) A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm 76(3):714–720

    Article  CAS  Google Scholar 

  • Wang S, Wang J (2018) Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate. Chem Eng J 336:595–601

    Article  CAS  Google Scholar 

  • Wang S, Wang J (2020) Treatment of membrane filtration concentrate of coking wastewater using PMS/chloridion oxidation process. Chem Eng J 379:122361

    Article  CAS  Google Scholar 

  • Wang X, Anctil A, Masten SJ (2019) Energy consumption and environmental impact analysis of ozonation catalytic membrane filtration system for water treatment. Environ Eng Sci 36(2):149–157

    Article  Google Scholar 

  • Wang X, Sun M, Zhao Y, Wang C, Ma W, Wong MS, Elimelech M (2020) In situ electrochemical generation of reactive chlorine species for efficient ultrafiltration membrane self-cleaning. Environ. Sci, Technol

    Book  Google Scholar 

  • Wang Y, Lin X, Shao Z, Shan D, Li G, Irini A (2017) Comparison of Fenton, UV-Fenton and nano-F\(\text{ e}_3\)O\(_4\) catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: Role of complexation of F\(\text{ e}^{3+}\) with hydroxyl group in phloroglucinol. Chem Eng J 313:938–945

    Article  CAS  Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    Article  CAS  Google Scholar 

  • Weber WJ, Hopkins CB, Bloom R (1970) Physicochemical treatment of wastewater. J Water Pollut Control Fed 42(1):83–99

    CAS  Google Scholar 

  • Wei Z, Villamena FA, Weavers LK (2017) Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study. Environ Sci Technol 51(6):3410–3417

    Article  CAS  Google Scholar 

  • Wordofa DN, Walker SL, Liu H (2017) Sulfate radical-induced disinfection of pathogenic Escherichia coli O157:H7 via iron-activated persulfate. Environ Sci Technol 4:154–160

    CAS  Google Scholar 

  • Wu W, Huang Z-H, Lim T-T (2014) Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. App Catal A Gen 480:58–78

    Article  CAS  Google Scholar 

  • Xiao R, Luo Z, Wei Z, Luo S, Spinney R, Yang W, Dionysiou DD (2018) Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr Opin Chem Eng 19:51–58

    Article  Google Scholar 

  • Xiao S, Qu J, Zhao X, Liu H, Wan D (2009) Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions. Water Res 43(5):1432–1440

    Article  CAS  Google Scholar 

  • Xu X, Ye Q, Tang T, Wang D (2008) HgO oxidative absorption by \(\text{ K}_{2}\text{ S}_{2}\text{ O}_{8}\) solution catalyzed by \(\text{ Ag}^{+}\) and \(\text{ Cu}^{2+}\). J Hazard Mater 158(2):410–416

    Article  CAS  Google Scholar 

  • Xu X-R, Li X-Z (2010) Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep Purif Technol 72(1):105–111

    Article  CAS  Google Scholar 

  • Yan DYS, Lo IMC (2013) Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate. Environ Pollut 178:15–22

    Article  CAS  Google Scholar 

  • Yin S, Han J, Zhou T, Xu R (2015) Recent progress in g-C\(_3\)N\(_4\) based low cost photocatalytic system: activity enhancement and emerging application. Catal Sci Technol 5:5048–5061

    Article  CAS  Google Scholar 

  • Yogranjan Bal LM, Satpute G, Srivastava A (2017) Chapter 19 - Plant stress signaling through corresponding nanobiotechnology. In: Oprea AE, Grumezescu AM (eds) Nanotechnology applications in food. Academic Press, Massachusetts, pp 381–391

    Chapter  Google Scholar 

  • Yuan R, Ramjaun SN, Wang Z, Liu J (2011) Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J Hazard Mater 196:173–179

    Article  CAS  Google Scholar 

  • Yun E-T, Yoo H-Y, Kim W, Kim H-E, Kang G, Lee H, Lee S, Park T, Lee C, Kim J-H, Lee J (2017) Visible-light-induced activation of periodate that mimics dye-sensitization of TiO\(_2\): simultaneous decolorization of dyes and production of oxidizing radicals. Appl Catal B Environ 203:475–484

    Article  CAS  Google Scholar 

  • Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A (2009) Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ Eng Manag J 8(6):1359–1369

    Article  CAS  Google Scholar 

  • Zawartka P, Burchart-Korol D, Blaut A (2020) Model of carbon footprint assessment for the life cycle of the system of wastewater collection, transport and treatment. Sci Rep 10:5799

    Article  CAS  Google Scholar 

  • Zepon Tarpani RR, Azapagic A (2018) Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). J Environ Manag 215:258–272

    Article  CAS  Google Scholar 

  • Zhang B-T, Zhang Y, Teng Y, Fan M (2015) Sulfate radical and its application in decontamination technologies. Crit Rev Environ Sci Technol 45(16):1756–1800

    Article  CAS  Google Scholar 

  • Zhang T, Chen Y, Wang Y, Roux JL, Yang Y, Croué J-P (2014) Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ Sci Technol 48:5868–5875

    Article  CAS  Google Scholar 

  • Zhang X, Guo K, Wang Y, Qin Q, Yuan Z, He J, Chen C, Wu Z, Fang J (2020) Roles of bromine radicals, HOBr and B\(\text{ r}_2\) in the transformation of flumequine by the UV/chlorine process in the presence of bromide. Chem Eng J 400:125222

    Article  CAS  Google Scholar 

  • Zhang Y, Li J, Bai J, Li X, Shen Z, Xia L, Chen S, Xu Q, Zhou B (2018) Total organic carbon and total nitrogen removal and simultaneous electricity generation for nitrogen-containing wastewater based on the catalytic reactions of hydroxyl and chlorine radicals. Appl Catal B Environ 238:168–176

    Article  CAS  Google Scholar 

  • Zhang Y, Wang H, Li Y, Wang B, Huang J, Deng S, Yu G, Wang Y (2020) Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Res 183:116115

    Article  CAS  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254–255:228–235

    Article  Google Scholar 

  • Zhao L, Chen Y, Liu Y, Luo C, Wu D (2017) Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite. Chemosphere 188:557–566

    Article  CAS  Google Scholar 

  • Zhou M, Oturan MA, Sirés I (2018) Electro-Fenton Process. Springer, Singapore

    Book  Google Scholar 

  • Zhou Y, Jiang J, Gao Y, Ma J, Pang S-Y, Li J, Lu X-T, Yuan L-P (2015) Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process. Environ Sci Technol 49:12941–12950

    Article  CAS  Google Scholar 

  • Zhu Y, Zhu R, Xi Y, Zhu J, Zhu G, He H (2019) Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal B Environ 255:117739

    Article  CAS  Google Scholar 

  • Zárate-Guzmán AI, González-Gutiérrez LV, Godínez LA, Medel-Reyes A, Carrasco-Marín F, Romero-Cano LA (2019) Towards understanding of heterogeneous Fenton reaction using carbon-Fe catalysts coupled to in-situ \(\text{ H}_{2}\text{ O}_{2}\) electro-generation as clean technology for wastewater treatment. Chemosphere 224:698–706

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 861369 (MSCA-ETN InnovEOX) and from the KU Leuven Industrial Research Council under grant numbers C24E/19/040 (SO4ELECTRIC) and C3/20/094 (Sani-TRouBLe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raf Dewil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 270 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feijoo, S., Yu, X., Kamali, M. et al. Generation of oxidative radicals by advanced oxidation processes (AOPs) in wastewater treatment: a mechanistic, environmental and economic review. Rev Environ Sci Biotechnol 22, 205–248 (2023). https://doi.org/10.1007/s11157-023-09645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-023-09645-4

Keywords

Navigation