Skip to main content

Advertisement

Log in

An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biomass utilization has received much attention for production of high density solid fuels. Utilization of cheap and naturally available precursors through environmentally friendly and effective processes is an attractive and emerging research area. Pyrolysis and hydrothermal carbonization (HTC) are well-known technologies available for production of solid biofuel using conventional or microwave heating. Microwave heating is a simpler and more efficient heating method than conventional heating. This study presents a critical review on microwave pyrolysis and microwave HTC for solid fuel production in terms of yield and quality of products. Moreover, a brief summary of parameters of microwave pyrolysis and microwave HTC are discussed. The fuel, chemical, structural and thermal weight loss characteristics of solid fuels produced from different biomass are discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abubakar Z, Ani FN (2013) Microwave-assisted pyrolysis of oil palm shell biomass. Jurnal Mekanikal 36:19–30

    Google Scholar 

  • Afolabi OO, Sohail M, Thomas C (2015) Microwave hydrothermal carbonization of human biowastes. Waste Biomass Valoriz 6:147–157

    CAS  Google Scholar 

  • Al Shra’ah A, Helleur R (2014) Microwave pyrolysis of cellulose at low temperature. J Anal Appl Pyrolysis 105:91–99

    Google Scholar 

  • Ania C, Parra J, Menendez J, Pis J (2005) Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous Mesoporous Mater 85:7–15

    CAS  Google Scholar 

  • Arami-Niya A, Abnisa F, Sahfeeyan MS, Daud WW, Sahu JN (2011) Optimization of synthesis and characterization of palm shell-based bio-char as a by-product of bio-oil production process. BioResources 7:0246–0264

    Google Scholar 

  • Baloch HA, Yang T, Li R, Nizamuddin S, Kai X, Bhutto AW (2016) Parametric study of co-gasification of ternary blends of rice straw, polyethylene and polyvinylchloride. Clean Technol Environ Policy 18:1031–1042

    CAS  Google Scholar 

  • Becker A, Schiemann M, Heuer S, Vorobiev N, Scherer V, Haxter D (2015) A standardized method for the characterization of coal ignition under oxyfuel conditions. In: 32nd International Pittsburgh Coal conference, Pittsburgh, PA

  • Beneroso D, Bermúdez J, Arenillas A, Menéndez J (2015) Influence of carrier gas on microwave-induced pyrolysis. J Anal Appl Pyrol 113:153–157

    CAS  Google Scholar 

  • Bhattacharya M, Basak T (2016) A review on the susceptor assisted microwave processing of materials. Energy 97:306–338

    Google Scholar 

  • Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol 44:353

    CAS  Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94

    CAS  Google Scholar 

  • Bu Q, Lei H, Ren S, Wang L, Zhang Q, Tang J et al (2012) Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Biores Technol 108:274–279

    CAS  Google Scholar 

  • Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Breeden SW, Wilson AJ et al (2009) The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresour Technol 100:6064–6068

    CAS  Google Scholar 

  • Buratti C, Barbanera M, Bartocci P, Fantozzi F (2015) Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Biores Technol 186:154–162

    CAS  Google Scholar 

  • Capunitan JA, Capareda SC (2013) Characterization and separation of corn stover bio-oil by fractional distillation. Fuel 112:60–73

    CAS  Google Scholar 

  • Chadwick DT, McDonnell KP, Brennan LP, Fagan CC, Everard CD (2014) Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: a review. Renew Sustain Energy Rev 30:672–681

    CAS  Google Scholar 

  • Chang SH (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenerg 62:174–181

    CAS  Google Scholar 

  • Chang AC, Chang H-F, Lin F-J, Lin K-H, Chen C-H (2011) Biomass gasification for hydrogen production. Int J Hydrog Energy 36:14252–14260

    CAS  Google Scholar 

  • Chen M-q, Wang J, M-x Zhang, M-g Chen, X-f Zhu, F-f Min et al (2008) Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl Pyrol 82:145–150

    CAS  Google Scholar 

  • Chen W-H, Ye S-C, Sheen H-K (2012) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Biores Technol 118:195–203

    CAS  Google Scholar 

  • Chen WY, Mattern DL, Okinedo E, Senter JC, Mattei AA, Redwine CW (2014) Photochemical and acoustic interactions of biochar with CO2 and H2O: applications in power generation and CO2 capture. AIChE J 60:1054–1065

    CAS  Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230

    CAS  Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116

    CAS  Google Scholar 

  • Demirbaş A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42:183–188

    Google Scholar 

  • Demirbas MF, Balat M, Balat H (2011) Biowastes-to-biofuels. Energy Convers Manag 52:1815–1828

    Google Scholar 

  • Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90

    Google Scholar 

  • Domínguez A, Menéndez J, Inguanzo M, Pis J (2005) Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Process Technol 86:1007–1020

    Google Scholar 

  • Domínguez A, Menéndez J, Inguanzo M, Pis J (2006) Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Biores Technol 97:1185–1193

    Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) A comprehensive review of biomass resources and biofuels potential in Ghana. Renew Sustain Energy Rev 15:404–415

    Google Scholar 

  • Elaigwu SE, Greenway GM (2016a) Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties. Fuel Process Technol 149:305–312

    CAS  Google Scholar 

  • Elaigwu SE, Greenway GM (2016b) Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. J Anal Appl Pyrol 118:1–8

    CAS  Google Scholar 

  • Elaigwu SE, Greenway GM (2016c) Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose. Int J Ind Chem 7:449–456

    CAS  Google Scholar 

  • Elaigwu SE, Kyriakou G, Prior TJ, Greenway GM (2014a) Microwave-assisted hydrothermal synthesis of carbon monolith via a soft-template method using resorcinol and formaldehyde as carbon precursor and pluronic F127 as template. Mater Lett 123:198–201

    CAS  Google Scholar 

  • Elaigwu SE, Rocher V, Kyriakou G, Greenway GM (2014b) Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopisafricana shell. J Ind Eng Chem 20:3467–3473

    CAS  Google Scholar 

  • Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg 31:426–432

    CAS  Google Scholar 

  • Fu J, Wang J (2014) Enhanced slurryability and rheological behaviors of two low-rank coals by thermal and hydrothermal pretreatments. Powder Technol 266:183–190

    CAS  Google Scholar 

  • Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32:649–661

    CAS  Google Scholar 

  • Gil M, García R, Pevida C, Rubiera F (2015) Grindability and combustion behavior of coal and torrefied biomass blends. Biores Technol 191:205–212

    CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    CAS  Google Scholar 

  • Gökkaya DS, Saglam M, Yuksel M, Ballice L (2016) Hydrothermal gasification of xylose: effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass Bioenerg 91:26–36

    Google Scholar 

  • Guiotoku M, Rambo C, Hansel F, Magalhaes W, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63:2707–2709

    CAS  Google Scholar 

  • Guiotoku M, Hansel FA, Novotny EH, Maia CMBdF (2012) Molecular and morphological characterization of hydrochar produced by microwave-assisted hydrothermal carbonization of cellulose. Pesquisa Agropecuária Brasileira 47:687–692

    Google Scholar 

  • Guiotoku M, Rambo CR, Hotza D (2014) Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. J Therm Anal Calorim 117:269–275

    CAS  Google Scholar 

  • Guo M, Bi J-C (2015) Characteristics and application of co-pyrolysis of coal/biomass blends with solid heat carrier. Fuel Process Technol 138:743–749

    CAS  Google Scholar 

  • Guo S, Dong X, Wu T, Zhu C (2016) Influence of reaction conditions and feedstock on hydrochar properties. Energy Convers Manag 123:95–103

    CAS  Google Scholar 

  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    CAS  Google Scholar 

  • Heilmann SM, Davis HT, JaderLR LefebvrePA, SadowskyMJ SchendelFJ et al (2010) Hydrothermal carbonization of microalgae. Biomass Bioenerg 34:875–882

    CAS  Google Scholar 

  • Holland KM (1994) Process of destructive distillation of organic material. Google Patents

  • Holland KM (1995) Apparatus for waste pyrolysis. Google Patents

  • Hossain MA, Jewaratnam J, Ganesan P, Sahu J, Ramesh S, Poh S (2016) Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: parametric investigation. Energy Convers Manag 115:232–243

    CAS  Google Scholar 

  • Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    CAS  Google Scholar 

  • Huang Y, Kuan W, Lo S, Lin C (2008) Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Biores Technol 99:8252–8258

    CAS  Google Scholar 

  • Huang Y-F, Chiueh P-T, Shih C-H, Lo S-L, Sun L, Zhong Y et al (2015a) Microwave pyrolysis of rice straw to producebiochar as an adsorbent for CO2 capture. Energy 84:75–82

    CAS  Google Scholar 

  • Huang Y-F, Chiueh P-T, Kuan W-H, Lo S-L (2015b) Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy 89:974–981

    CAS  Google Scholar 

  • Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ (2010) Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Biores Technol 101:4584–4592

    CAS  Google Scholar 

  • Inoue S (2010) Hydrothermal carbonization of empty fruit bunches. J Chem Eng Jpn 43:972–976

    CAS  Google Scholar 

  • Ioannidou O, Zabaniotou A, Antonakou E, Papazisi K, Lappas A, Athanassiou C (2009) Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sustain Energy Rev 13:750–762

    CAS  Google Scholar 

  • Isahak WNRW, Hisham MW, Yarmo MA, Hin TY (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16:5910–5923

    CAS  Google Scholar 

  • Islam MA, Kabir G, Asif M, Hameed B (2015) Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamiapinnata) fruit hulls via thermogravimetric analysis. Biores Technol 194:14–20

    CAS  Google Scholar 

  • Ismail K, Ishak MAM, AbGhani Z, Abdullah MF, Safian MT-u, Idris SS et al (2013) Microwave-assisted pyrolysis of palm kernel shell: optimization using response surface methodology (RSM). Renew Energy 55:357–365

    Google Scholar 

  • Jacobson K, Maheria KC, Dalai AK (2013) Bio-oil valorization: a review. Renew Sustain Energy Rev 23:91–106

    CAS  Google Scholar 

  • Jamari SS, Howse JR (2012) The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenerg 47:82–90

    CAS  Google Scholar 

  • Januri ZB, Idris SS, Rahman NA, Matali S, Manaf SF, Rahman AF, Rahman SN (2016) Solid char characterization from effect of radiation time study on microwave assisted pyrolysis of kitchen waste. J Eng Sci Technol 11:70–82

    Google Scholar 

  • Johansson TB (1993) Renewable energy: sources for fuels and electricity. Island Press, Washington

    Google Scholar 

  • Kappe CO, Stadler A, Dallinger D (2012) Microwaves in organic and medicinal chemistry. Wiley, New York

    Google Scholar 

  • Khan A, De Jong W, Jansens P, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90:21–50

    CAS  Google Scholar 

  • Kharisov BI, Kharissova OV, Méndez UO (2012) Microwave hydrothermal and solvothermal processing of materials and compounds. INTECH Open Access Publisher, Denver

    Google Scholar 

  • Lam SS, Russell AD, Lee CL, Chase HA (2012) Microwave-heated pyrolysis of waste automotive engine oil: influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel 92:327–339

    CAS  Google Scholar 

  • Lam SS, Liew RK, Cheng CK, Chase HA (2015) Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl Catal B 176:601–617

    Google Scholar 

  • Lapuerta MN, Hernández JJ, Rodríguez JN (2004) Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy 27:385–391

    CAS  Google Scholar 

  • Lavanya M, Meenakshisundaram A, Renganathan S, Chinnasamy S, Lewis DM, Nallasivam J et al (2016) Hydrothermal liquefaction of freshwater and marine algal biomass: a novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude. Biores Technol 203:228–235

    CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat Glob Change 11:395–419

    Google Scholar 

  • Lei H, Ren S, Julson J (2009) The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis. Energy Fuels 23:3254–3261

    CAS  Google Scholar 

  • Li M-F, Shen Y, Sun J-K, Bian J, Chen C-Z, Sun R-C (2015) Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating. ACS Sustain Chem Eng 3:2022–2029

    CAS  Google Scholar 

  • Lin B-J, Chen W-H (2015) Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Front Energy Res 3:4

    Google Scholar 

  • Lin Y, Liao Y, Yu Z, Fang S, Lin Y, Fan Y et al (2016) Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energy Convers Manag 118:345–352

    CAS  Google Scholar 

  • Liu Z, Zhang F-S (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939

    CAS  Google Scholar 

  • Liu Z, Quek A, Hoekman SK, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949

    CAS  Google Scholar 

  • Liu H, Ma X, Li L, Hu Z, Guo P, Jiang Y (2014) The catalytic pyrolysis of food waste by microwave heating. Biores Technol 166:45–50

    CAS  Google Scholar 

  • Masnadi MS, Grace JR, Bi XT, Lim CJ, Ellis N, Li YH et al (2015) From coal towards renewables: catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed. Renew Energy 83:918–930

    CAS  Google Scholar 

  • Massaro M, Son S, Groven L (2014) Mechanical, pyrolysis, and combustion characterization of briquetted coal fines with municipal solid waste plastic (MSW) binders. Fuel 115:62–69

    CAS  Google Scholar 

  • Menéndez J, Domínguez A, Fernández Y, Pis J (2007) Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls. Energy Fuels 21:373–378

    Google Scholar 

  • Meredith RJ (1998) Engineers’ handbook of industrial microwave heating. IET, p 25

  • Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483

    CAS  Google Scholar 

  • Mochidzuki K, Sato N, Sakoda A (2005) Production and characterization of carbonaceous adsorbents from biomass wastes by aqueous phase carbonization. Adsorption 11:669–673

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889

    CAS  Google Scholar 

  • Mokhlisse A, Chanâa MB, Outzourhit A (2000) Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation. Fuel 79:733–742

    Google Scholar 

  • Motasemi F, Afzal MT (2013) A review on the microwave-assisted pyrolysis technique. Renew Sustain Energy Rev 28:317–330

    CAS  Google Scholar 

  • Motasemi F, Salema AA, Afzal MT (2015) Microwave dielectric properties of agricultural biomass at high temperature in an inert environment. Trans ASABE 58:869–877

    CAS  Google Scholar 

  • Mubarak N, Sahu J, Abdullah E, Jayakumar N (2016) Plam oil empty fruit bunch based magnetic biochar composite comparison for synthesis by microwave-assisted and conventional heating. J Anal Appl Pyrol 120:521–528

    CAS  Google Scholar 

  • Mushtaq F, Mat R, Ani FN (2014) A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew Sustain Energy Rev 39:555–574

    CAS  Google Scholar 

  • Nizamuddin S, Jayakumar NS, Sahu JN, Ganesan P, Bhutto AW, Mubarak NM (2015a) Hydrothermal carbonization of oil palm shell. Korean J Chem Eng 32:1789–1797

    CAS  Google Scholar 

  • Nizamuddin S, Kumar J, Subramanian N, SahuJN GanesanP, Mubarak NM et al (2015b) Synthesis and characterization of hydrochars produced by hydrothermal carbonization of oil palm shell. Can J Chem Eng 93:1916–1921

    CAS  Google Scholar 

  • Nizamuddin S, Shrestha S, Athar S, Ali BS, Siddiqui MA (2016a) A critical analysis on palm kernel shell from oil palm industry as a feedstock for solid char production. Rev Chem Eng 32:489–505

    CAS  Google Scholar 

  • Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P (2016b) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97

    CAS  Google Scholar 

  • Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6:128–141

    Google Scholar 

  • Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils state of the art for the end users. Energy Fuels 13:914–921

    CAS  Google Scholar 

  • Oliveira I, Blöhse D, Ramke H-G (2013) Hydrothermal carbonization of agricultural residues. Biores Technol 142:138–146

    CAS  Google Scholar 

  • Pala M, Kantarli IC, Buyukisik HB, Yanik J (2014) Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Biores Technol 161:255–262

    CAS  Google Scholar 

  • Parikh J, Channiwala S, Ghosal G (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84:487–494

    CAS  Google Scholar 

  • Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour Technol 135:683–689

    CAS  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1:32–65

    CAS  Google Scholar 

  • Pramanik K (2003) Properties and use of Jatrophacurcas oil and diesel fuel blends in compression ignition engine. Renew Energy 28:239–248

    CAS  Google Scholar 

  • Ramachandra T, Shruthi B (2007) Spatial mapping of renewable energy potential. Renew Sustain Energy Rev 11:1460–1480

    Google Scholar 

  • Ren S, Lei H, Wang L, Bu Q, Chen S, Wu J et al (2012) Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. J Anal Appl Pyrol 94:163–169

    CAS  Google Scholar 

  • Rosa R, Ponzoni C, Leonelli C (2014) Direct energy supply to the reaction mixture during microwave-assisted hydrothermal and combustion synthesis of inorganic materials. Inorganics 2:191–210

    CAS  Google Scholar 

  • Saidur R, Abdelaziz E, Demirbas A, Hossain M, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15:2262–2289

    CAS  Google Scholar 

  • Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde J (2012) Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Biores Technol 109:163–172

    CAS  Google Scholar 

  • Satpathy SK, Tabil LG, Meda V, Naik SN, Prasad R (2014) Torrefaction of wheat and barley straw after microwave heating. Fuel 124:269–278

    CAS  Google Scholar 

  • Schröder E (2004) Experiments on the pyrolysis of large beechwood particles in fixed beds. J Anal Appl Pyrol 71:669–694

    Google Scholar 

  • Şensöz S, Can M (2002) Pyrolysis of pine (Pinusbrutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sources 24:347–355

    Google Scholar 

  • Şensöz S, Angın D, Yorgun S (2000) Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenerg 19:271–279

    Google Scholar 

  • Shang H, Lu R-R, Shang L, Zhang W-H (2015) Effect of additives on the microwave-assisted pyrolysis of sawdust. Fuel Process Technol 131:167–174

    CAS  Google Scholar 

  • Thangalazhy-Gopakumar S, Al-Nadheri WMA, Jegarajan D, Sahu J, Mubarak N, Nizamuddin S (2015) Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Biores Technol 178:65–69

    CAS  Google Scholar 

  • Titirici M-M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789

    CAS  Google Scholar 

  • Tripathi M, Sahu J, Ganesan P, Dey T (2015) Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Fuel 153:257–266

    CAS  Google Scholar 

  • Tsubaki S, Oono K, Onda A, Yanagisawa K, Azuma J-i (2012) Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts. Biores Technol 123:703–706

    CAS  Google Scholar 

  • Undri A, Rosi L, Frediani M, Frediani P (2014) Microwave assisted pyrolysis of corn derived plastic bags. J Anal Appl Pyrol 108:86–97

    CAS  Google Scholar 

  • Verma M, Godbout S, Brar S, Solomatnikova O, Lemay S, Larouche J (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012:1–18

    Google Scholar 

  • Vhathvarothai N, Ness J, Yu QJ (2014) An investigation of thermal behaviour of biomass and coal during copyrolysis using thermogravimetric analysis. Int J Energy Res 38:1145–1154

    CAS  Google Scholar 

  • Wang X-H, Chen H-P, Ding X-J, Yang H-P, Zhang S-H, Shen Y-Q (2009) Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources 4:946–959

    CAS  Google Scholar 

  • Wang N, Tahmasebi A, Yu J, Xu J, Huang F, Mamaeva A (2015) A comparative study of microwave-induced pyrolysis of lignocellulosicand algal biomass. Biores Technol 190:89–96

    CAS  Google Scholar 

  • Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361

    CAS  Google Scholar 

  • Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J (2013) Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 1:1092–1101

    CAS  Google Scholar 

  • Yang KS, Yoon YJ, Lee MS, Lee WJ, Kim JH (2002) Further carbonization of anisotropic and isotropic pitch-based carbons by microwave irradiation. Carbon 40:897–903

    CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C (2006) Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Process Technol 87:935–942

    CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    CAS  Google Scholar 

  • Yin C (2012) Microwave-assisted pyrolysis of biomass for liquid biofuels production. Biores Technol 120:273–284

    CAS  Google Scholar 

  • Yu Y, Yu J, Sun B, Yan Z (2014) Influence of catalyst types on the microwave-induced pyrolysis of sewage sludge. J Anal Appl Pyrol 106:86–91

    CAS  Google Scholar 

  • Yuan T, Tahmasebi A, Yu J (2015) Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Biores Technol 175:333–341

    CAS  Google Scholar 

  • Zhao X, Song Z, Liu H, Li Z, Li L, Ma C (2010) Microwave pyrolysis of corn stalk bale: a promising method for direct utilization of large-sized biomass and syngas production. J Anal Appl Pyrol 89:87–94

    CAS  Google Scholar 

  • Zhao X, Zhang J, Song Z, Liu H, Li L, Ma C (2011) Microwave pyrolysis of straw bale and energy balance analysis. J Anal Appl Pyrol 92:43–49

    CAS  Google Scholar 

  • Zhong C, Wei X (2004) A comparative experimental study on the liquefaction of wood. Energy 29:1731–1741

    CAS  Google Scholar 

  • Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J (2014) Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Biores Technol 154:209–214

    CAS  Google Scholar 

  • Zuo W, Tian Y, Ren N (2011) The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Manag 31:1321–1326

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabzoi Nizamuddin or N. M. Mubarak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizamuddin, S., Baloch, H.A., Siddiqui, M.T.H. et al. An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass. Rev Environ Sci Biotechnol 17, 813–837 (2018). https://doi.org/10.1007/s11157-018-9476-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-018-9476-z

Keywords

Navigation