Skip to main content

Advertisement

Log in

Fermentative biohydrogen production: trends and perspectives

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biologically produced hydrogen (biohydrogen) is a valuable gas that is seen as a future energy carrier, since its utilization via combustion or fuel cells produces pure water. Heterotrophic fermentations for biohydrogen production are driven by a wide variety of microorganisms such as strict anaerobes, facultative anaerobes and aerobes kept under anoxic conditions. Substrates such as simple sugars, starch, cellulose, as well as diverse organic waste materials can be used for biohydrogen production. Various bioreactor types have been used and operated under batch and continuous conditions; substantial increases in hydrogen yields have been achieved through optimum design of the bioreactor and fermentation conditions. This review explores the research work carried out in fermentative hydrogen production using organic compounds as substrates. The review also presents the state of the art in novel molecular strategies to improve the hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Dominguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  CAS  Google Scholar 

  • Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrogen Energy 30(13–14):1393–1397

    Article  CAS  Google Scholar 

  • Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14(9):1101–1103

    Article  CAS  Google Scholar 

  • Bisaillon A, Turcot J, Hallenbeck PC (2006) The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy 31(11):1504–1508

    Article  CAS  Google Scholar 

  • Cai ML, Liu JX, Wei YS (2004) Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol 38(11):3195–3202

    Article  CAS  Google Scholar 

  • Calli B, Boënne W, Vanbroekhoven K (2006) Bio-hydrogen potential of easily biodegradable substrate through dark fermentation. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, pp 215–216

  • Camilli M, Pedroni PM (2005) Comparison of the performance of three different reactors for biohydrogen production via dark anaerobic fermentations. In: Proceedings of the international hydrogen energy congress and exhibition. BHP 250, CD-ROM. Istanbul, Turkey

  • Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29(1):33–39

    Article  CAS  Google Scholar 

  • Chen WM, Tseng ZJ, Lee KS, Chang JS (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30(10):1063–1070

    Article  CAS  Google Scholar 

  • Cheng SS, Li SL, Kuo SC, Lin JS, Lee ZK, Wang YH (2006) A feasibility study of biohydrogenation from kitchen waste fermentation. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, p 56

  • Cheong DY, Hansen CL (2006) Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochem 41(8):1736–1745

    Article  CAS  Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755

    Article  CAS  Google Scholar 

  • Collet C, Adler N, Schwitzguebel JP, Peringer P (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 29(14):1479–1485

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  CAS  Google Scholar 

  • de Mes TZD, Stams AJM, Reith JH, Zeeman G (2003) Methane production by anaerobic digestion of wastewater and solid wastes. In: Reith JH, Wijffels RH, Barten H (eds) Bio-methane & biohydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, Petten, The Netherlands, pp 58–102

    Google Scholar 

  • de Vrije T, Claassen PAM (2003) Dark hydrogen fermentations. In: Reith JH, Wijffels RH, Barten H (eds) Bio-methane & biohydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, Petten, The Netherlands, pp 103–123

    Google Scholar 

  • Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97(3):500–505

    Article  CAS  Google Scholar 

  • Fang HHP, Li CL, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31(6):683–692

    Article  CAS  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2002) Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78(1):44–52

    Article  CAS  Google Scholar 

  • Ferchichi M, Crabbe E, Gil GH, Hintz W, Almadidy A (2005) Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120(4):402–409

    Article  CAS  Google Scholar 

  • Gavala HN, Skiadas LV, Ahring BK (2006) Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 31(9):1164–1175

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52(1–2):21–29

    CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27(11–12):1185–1193

    Article  CAS  Google Scholar 

  • Harada M, Kaneko T, Tanisho S (2006) Improvement of H2 yield of fermentative bacteria by gene manipulation. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, p 211

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27(11–12):1339–1347

    Article  CAS  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 32(2):172–184

    Article  CAS  Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30(5):471–483

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582

    Article  CAS  Google Scholar 

  • Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita Y, Sugimura S, Furukawa K (2005) Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng 100(5):524–530

    Article  CAS  Google Scholar 

  • Kim MS, Oh YK, Yun YS, Lee DY (2006) Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, p 50

  • Kotay SM, Das D (2006) Feasibility of biohydrogen production from sewage sludge using defined microbial consortium. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, pp 209–210

  • Kotsopoulos TA, Zeng RJ, Angelidaki I (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C). Biotechnol Bioeng 94(2):296–302

    Article  CAS  Google Scholar 

  • Kraemer JT, Bagley DM (2005) Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ Sci Technol 39(10):3819–3825

    Article  CAS  Google Scholar 

  • Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL (2006) Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng 93(5):971–979

    Article  CAS  Google Scholar 

  • Lay JJ (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68(3):269–278

    Article  CAS  Google Scholar 

  • Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579–2586

    Article  CAS  Google Scholar 

  • Lee KS, Lin PJ, Chang JS (2006) Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrogen Energy 31(4):465–472

    Article  CAS  Google Scholar 

  • Leite JAC, Fernandes BS, Pozzi E, Chinalia FA, Maintinguer SI, Varesche MBA, Foresti E, Pasotto MB, Zaiat M (2006) Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, p 47

  • Leonhartsberger S, Korsa I, Bock A (2002) The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 4(3):269–276

    CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29(2):173–185

    Article  CAS  Google Scholar 

  • Lin C-N, Wu S-Y, Chang J-S (2006a) Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. Int J Hydrogen Energy 31(15):2200–2210

    Article  CAS  Google Scholar 

  • Lin CY, Chang RC (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol 74(6):498–500

    Article  CAS  Google Scholar 

  • Lin CY, Chen HP (2006) Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. Int J Hydrogen Energy 31(7):953–960

    Article  CAS  Google Scholar 

  • Lin CY, Cheng CH (2006) Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydrogen Energy 31(7):832–840

    Article  CAS  Google Scholar 

  • Lin CY, Lay CH (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 30(3):285–292

    Article  CAS  Google Scholar 

  • Lin CY, Lee CY, Tseng IC, Shiao IZ (2006b) Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora. Process Biochem 41(4):915–919

    Article  CAS  Google Scholar 

  • Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38(9):160A–167A

    Article  CAS  Google Scholar 

  • Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36(11):2530–2535

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Microbial fuel cells–challenges and applications. Environ Sci Technol 40(17):5172–5180

    Article  CAS  Google Scholar 

  • Mishra J, Khurana S, Kumar N, Ghosh AK, Das D (2004) Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08. Biochem Biophys Res Commun 324(2):679–685

    Article  CAS  Google Scholar 

  • Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246(2):229–234

    Article  CAS  Google Scholar 

  • Mu Y, Wang G, Yu HQ (2006a) Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol 97(11):1302–1307

    Article  CAS  Google Scholar 

  • Mu Y, Wang G, Yu HQ (2006b) Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb Technol 38(7):905–913

    Article  CAS  Google Scholar 

  • Mu Y, Yu HQ (2006) Biological hydrogen production in a UASB reactor with granules. I: physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94(5):980–987

    Article  CAS  Google Scholar 

  • Mu Y, Yu HQ, Wang Y (2006c) The role of pH in the fermentative H2 production from an acidogenic granule-based reactor. Chemosphere 64(3):350–358

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65(5):520–529

    Article  CAS  Google Scholar 

  • Oh SE, Van Ginkel S, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37(22):5186–5190

    Article  CAS  Google Scholar 

  • Oh YK, Kim SH, Kim MS, Park S (2004) Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88(6):690–698

    Article  CAS  Google Scholar 

  • Park W, Hyun SH, Oh SE, Logan BE, Kim IS (2005) Removal of headspace CO2 increases biological hydrogen production. Environ Sci Technol 39(12):4416–4420

    Article  CAS  Google Scholar 

  • Penfold DW, Forster CF, Macaskie LE (2003) Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enzyme Microb Technol 33(2–3):185–189

    Article  CAS  Google Scholar 

  • Penfold DW, Macaskie LE (2004) Production of H2 from sucrose by Escherichia coli strains carrying the pUR400 plasmid, which encodes invertase activity. Biotechnol Lett 26(24):1879–1883

    Article  CAS  Google Scholar 

  • Penfold DW, Sargent F, Macaskie LE (2006) Inactivation of the Escherichia coli K-12 twin-arginine translocation system promotes increased hydrogen production. FEMS Microbiol Lett 262(2):135–137

    Article  CAS  Google Scholar 

  • Reisch MS (2006) Fuels of the future. Chem Eng News 84(47):30–32

    Google Scholar 

  • Ren N, Li J, Li B, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31(15):2147–2157

    Article  CAS  Google Scholar 

  • Salerno MB, Park W, Zuo Y, Logan BE (2006) Inhibition of biohydrogen production by ammonia. Water Res 40(6):1167–1172

    Article  CAS  Google Scholar 

  • Sawers RG (2005) Formate and its role in hydrogen production in Escherichia coli. Biochem Soc Trans 33(part. 1):42–46

    Google Scholar 

  • Setlow P (2000) Resistance of bacterial spores. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 217–230

    Google Scholar 

  • Smith JM, Van Ness HC, Abbott MM (2000) Introduction to chemical engineering thermodynamics. McGraw-Hill, New York

    Google Scholar 

  • Svensson B, Karlsson A (2005) Dark fermentation for hydrogen production from organic wastes. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells: renewable energy from biomass fermentation. IWA Publishing, London, UK, pp 209–219

    Google Scholar 

  • Ueno Y, Fukui H, Goto M (2004) Hydrogen fermentation from organic waste. In: Proceedings of the 15th world hydrogen energy conference. 29E-02, CD-ROM

  • Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41(4):1413–1419

    Article  CAS  Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57(4):555–562

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Rios-Leal E, Carmona-Martinez A, Munoz-Paez KM, Poggi-Varaldo HM (2006) Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environ Sci Technol 40(10):3409–3415

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, Cecchi F, Poggi-Varaldo HA (2005) Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrogen Energy 30(13–14):1383–1391

    Article  CAS  Google Scholar 

  • Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energy 30(15):1535–1542

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R (2002) Termodinámica biológica. AGT Editor, México

    Google Scholar 

  • Vijayaraghavan K, Ahmad D (2006) Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int J Hydrogen Energy 31(10):1284–1291

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Ahmad D, Bin Ibrahim MK (2006) Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrogen Energy 31(5):569–579

    Article  CAS  Google Scholar 

  • Wang L, Zhou Q, Li FT (2006) Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass Bioenergy 30(2):177–182

    Article  CAS  Google Scholar 

  • Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS (2006a) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 93(5):934–946

    Article  CAS  Google Scholar 

  • Wu SY, Lin CN, Chang JS, Chang JS (2005) Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. Int J Hydrogen Energy 30(13–14):1375–1381

    Article  CAS  Google Scholar 

  • Wu SY, Lin CN, Shen YC, Chang JS, Lin CY (2006b) Exploring biohydrogen-producing performance in three-phase fluidized bed bioreactors using different types of immobilized cells. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, p 50

  • Yang H, Shao P, Lu T, Shen J, Wang D, Xu Z, Yuan X (2006) Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy 31(10):1306–1313

    Article  CAS  Google Scholar 

  • Yasuda K, Tanisho S (2006) Fermentative hydrogen production from artificial food wastes. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, p 210

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71(11):6762–6768

    Article  CAS  Google Scholar 

  • Zhang HS, Bruns MA, Logan BE (2006) Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res 40(4):728–734

    Article  CAS  Google Scholar 

  • Zhang JJ, Li XY, Oh SE, Logan BE (2004) Physical and hydrodynamic properties of flocs produced during biological hydrogen production. Biotechnol Bioeng 88(7):854–860

    Article  CAS  Google Scholar 

  • Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manage 74(1):65–70

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondo Mixto San Luis Potosí – Consejo Nacional de Ciencia y Tecnología (FMSLP-2005-C01-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Razo-Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davila-Vazquez, G., Arriaga, S., Alatriste-Mondragón, F. et al. Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7, 27–45 (2008). https://doi.org/10.1007/s11157-007-9122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-007-9122-7

Keywords

Navigation