Skip to main content
Log in

Pricing credit card loans with default risks: a discrete-time approach

  • Original Research
  • Published:
Review of Quantitative Finance and Accounting Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to modify the Jarrow and van Deventer model by using Das and Sundaram (Manag Sci 46:46–62, 2000) model to extend the Heath–Jarrow–Morton (J Finan Quant Anal 25:419–440, 1990) term-structure model to facilitate the consideration of default risks for pricing credit card loans. Furthermore, we derive closed-form solutions within a continuous-time framework. In addition, we also provide a numerical method for the evaluation of credit card loans within a discrete-time framework. Using the market segmentation argument to describe the characteristics of the credit card industry, our simulation results show that the shapes of the forward rate and forward spread (default risk premium) term structures play extremely important roles in determining the value of credit card loans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We are grateful to an anonymous referee for his/her precious and helpful comments on this point.

  2. About the issue of taking default risks into account, Jarrow and van Deventer (1998) suggest to use a deterministic dollar loss into the model. Differently from Jarrow and van Deventer, we further generalize the pricing model of credit card loans with defaults by incorporating a stochastic term and that would approach to the reality more.

  3. Das and Sundaram (2000) develop a model for pricing risky debt under the risk-neutral measure. We derive the models of the credit card loans in the spirit of Das and Sundaram.

  4. Our considering of credit spread means that there exists an implied recovery in our model. Comparing to using a proportional recovery of treasury by Jarrow and Turnbull (1995), our model incorporates Das and Sundaram (2000) method implying that we use the “recovery of market value” condition of Duffie and Singleton (1999).

  5. The Jarrow and van Deventer (1998) paper has considered the defaults on the part of the individual investors. It is not difficult to incorporate an individual default amount into our model.

  6. See Das and Sundaram (2000) for detail derivations.

References

  • Ausubel L (1991) The failure of competition in the credit card markets. Am Econ Rev 81:50–81

    Google Scholar 

  • Calem PS, Mester LJ (1995) Consumer behavior and the stickiness of credit-card interest rates. Am Econ Rev 85:1327–1336

    Google Scholar 

  • Calomirs CW, Mason JR (2004) Credit card securitization and regulatory arbitrage. J Financ Serv Res 26(1):5–27

    Article  Google Scholar 

  • Das SR, Sundaram RK (2000) A discrete-time approach to arbitrage-free pricing of credit derivatives. Manag Sci 46(1):46–62

    Article  Google Scholar 

  • Duffie D, Singleton KJ (1999) Modeling term structures of defaultable bonds. Rev Financ Stud 12:687–720

    Article  Google Scholar 

  • Flesaker B (1993) Testing the Heath–Jarrow–Morton/Ho–Lee model of interest rate contingent claims pricing. J Financ Quant Anal 28(4):213–228

    Article  Google Scholar 

  • Heath D, Jarrow R, Morton A (1990) Bond pricing and the term structure of interest rates: a discrete time approximation. J Finan Quant Anal 25(4):419–440

    Article  Google Scholar 

  • Heath D, Jarrow R, Morton A (1992) Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60(1):77–105

    Article  Google Scholar 

  • Hutchison D, Pennacchi G (1996) Measuring rents and interest rate risk in imperfect financial markets: the case of retail bank deposits. J Financ Quant Anal 31:399–417

    Article  Google Scholar 

  • Jarrow RA, van Deventer DR (1998) The arbitrage-free valuation and hedging of demand deposits and credit card loans. J Bank Finance 22:249–272

    Article  Google Scholar 

  • Jarrow RA, Turnbull SM (1995) Pricing options on financial securities subject to default risk. J Finance 50:53–86

    Article  Google Scholar 

  • O’Brien J, Orphanides A, Small D (1994) Estimating the Interest Rate Sensitivity of Liquid Retail Deposit Values. Paper presented at the Conference on Bank Structure and Competition

  • Office of Thrift Supervision (1994) The OTS Net Portfolio Value Model, Office of Thrift Supervision, Department of Treasury

  • Wolfram S (1988) Mathematica: a system for doing mathematics by computer. Addison-Wesley, Redwood city, California

    Google Scholar 

  • Zhou C (2001) The term structure of credit spreads with jump risk. J Bank Finance 25(11):2015–2040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang-Chang Chang.

Appendices

Appendix 1: The derivation of Proposition 3.1

$$ \begin{aligned} V_{L} (t) = & E_{t} [ - L(t) + {\frac{1}{{{ \exp }\{ \varphi (t,t)*h\} }}}[L(t)*{ \exp }\{ c(t)*h\} - L(t + h)] \\ & + {\frac{1}{{{ \exp }\{ [\varphi (t,t) + \varphi (t + h,t + h)]*h\} }}}[L(t + h)*{ \exp }\{ c(t + h)*h\} - L(t + 2h)] \\ & + {\frac{1}{{{ \exp }\{ [\varphi (t,t) + \varphi (t + h,t + h) + \varphi (t + 2h,t + 2h)]*h\} }}}[L(t + 2h)*{ \exp }\{ c(t + 2h)*h\} - L(t + 3h)] \\ & + \cdots + \cdots + \cdots + {\frac{1}{{\exp \{ \sum\limits_{{i = {\frac{t}{h}}}}^{{{\frac{T}{h}} - 2}} {\varphi (ih,ih)*h} \} }}}[L(T - 2h)*\exp \{ c(T - 2h)*h\} - L(T - h)] \\ & + {\frac{1}{{{ \exp }\{ \sum\limits_{{i = {\frac{t}{h}}}}^{{{\frac{T}{h}} - 1}} {\varphi (ih,ih)*h} \} }}}[L(T - h)*{ \exp }\{ c(T - h)*h\} ]] \\ = & E_{t} [ - L(t) + {\frac{J(t)}{J(t + h)}}[L(t)*{ \exp }\{ c(t)*h\} - L(t + h)] + {\frac{J(t)}{J(t + 2h)}}[L(t + h)*{ \exp }\{ c(t + h)*h\} - L(t + 2h)] \\ & + {\frac{J(t)}{J(t + 3h)}}[L(t + 2h)*{ \exp }\{ c(t + 2h)*h\} - L(t + 3h)] + \cdots \\ & + {\frac{J(t)}{J(T - h)}}[L(T - 2h)*{ \exp }\{ c(T - 2h)*h\} - L(T - h)] + {\frac{J(t)}{J(T)}}[L(T - h)*{ \exp }\{ c(T - h)*h\} ]] \\ = & E_{t} [ - L(t) \\ & + [{\frac{J(t)}{J(t + h)}}*L(t)*{ \exp }\{ c(t)*h\} + {\frac{J(t)}{J(t + 2h)}}*L(t + h)*{ \exp }\{ c(t + h)*h\} + {\frac{J(t)}{J(t + 3h)}}*L(t + 2h)*{ \exp }\{ c(t + 2h)*h\} \\ & + \cdots + {\frac{J(t)}{J(T - h)}}*L(T - 2h)*{ \exp }\{ c(T - 2h)*h\} + {\frac{J(t)}{J(T)}}*L(T - h)*{ \exp }\{ c(T - h)*h\} ] \\ & - [{\frac{J(t)}{J(t + h)}}*L(t + h) + {\frac{J(t)}{J(t + 2h)}}*L(t + 2h) + {\frac{J(t)}{J(t + 3h)}}*L(t + 3h) + \cdots + {\frac{J(t)}{J(T - h)}}*L(T - h)]] \\ = & E_{t} [ - L(t) + J(t)[\sum\limits_{k = t/h}^{T/h - 1} {{\frac{{L(kh)*{ \exp }\{ c(kh)*h\} }}{J(kh + h)}}} - \sum\limits_{k = t/h}^{T/h - 2} {{\frac{L(kh + h)}{J(kh + h)}}} ]] \\ = & E_{t} [ - L(t) + J(t)[\sum\limits_{k = t/h}^{T/h - 1} {{\frac{{L(kh)*{ \exp }\{ c(kh)*h\} - L(kh + h)}}{J(kh + h)}} + } {\frac{L(T)}{J(T)}}]] \\ = & E_{t} [ - L(t) + J(t)*\sum\limits_{k = t/h}^{T/h - 1} {{\frac{{L(kh)*{ \exp }\{ c(kh)*h\} - L(kh + h)}}{J(kh + h)}} + } {\frac{J(t)*L(T)}{J(T)}}]. \quad {\text{Q.E.D.}}\\ \end{aligned} $$

Appendix 2: The derivation of Lemma 4.1

From Eq. 4, the net present value of the credit card loan can be expressed as:

$$ V_{L} (t) = E_{t} \left[ { - L(t) + \sum\limits_{i = t/h}^{T/h - 2} {{\frac{{L(ih)\exp \left( {c(ih)h} \right) - L((i + 1)h)}}{{\exp \left( {\sum\limits_{j = t/h}^{i} {\varphi (jh,jh)h} } \right)}}}} + {\frac{{L(T - h)\exp \left( {c(T - h)h} \right)}}{{\exp \left( {\sum\limits_{j = t/h}^{T/h - 1} {\varphi (jh,jh)h} } \right)}}}} \right] $$
$$ = E_{t} \left[ {\sum\limits_{i = t/h}^{T/h - 2} {{\frac{{L(ih)\exp \left( {c(ih)h} \right)}}{{\exp \left( {\sum\limits_{j = t/h}^{i} {\varphi (jh,jh)h} } \right)}}}} + {\frac{{L(T - h)\exp \left( {c(T - h)h} \right)}}{{\exp \left( {\sum\limits_{j = t/h}^{T/h - 1} {\varphi (jh,jh)h} } \right)}}}} \right.\;\; $$
$$ \left. {\; - {\frac{{L(t)\exp \left( {\varphi (t,t)h} \right)}}{{\exp \left( {\varphi (t,t)h} \right)}}} - \sum\limits_{i = t/h}^{T/h - 2} {{\frac{{L((i + 1)h)\exp \left( {\varphi \left( {(i + 1)h,(i + 1)h} \right)h} \right)}}{{\exp \left( {\sum\limits_{j = t/h}^{i} {\varphi (jh,jh)h} } \right)\exp \left( {\varphi \left( {(i + 1)h,(i + 1)h} \right)h} \right)}}}} } \right] $$
$$ = E_{t} \left[ {\sum\limits_{i = t/h}^{T/h - 1} {{\frac{{L(ih)\left[ {\exp \left( {c(ih)h} \right) - \exp \left( {\varphi (ih,ih)h} \right)} \right]}}{{\exp \left( {\sum\limits_{j = t/h}^{i} {\varphi (jh,jh)h} } \right)}}}} } \right]. \quad {\text{Q.E.D.}}$$

Appendix 3: The derivation of Proposition 4.2

From Eq. 25, we have:

$$ r(t) = f(0,t) + \sigma_{r}^{2} (e^{{ - a_{r} t}} - 1)^{2} /(2a_{r}^{2} ) + \int_{0}^{t} {\sigma_{r} e^{{ - a_{r} (t - u)}} {\text{d}}\widetilde{{W_{r} }}(u)} , $$
(33)

We can then write:

$$ \int_{0}^{t} {r(u){\text{d}}u} = \int_{0}^{t} {f(0,u){\text{d}}u} + \int_{0}^{t} {\sigma_{r}^{2} (e^{{ - a_{r} u}} - 1)^{2} /(2a_{r}^{2} )} {\text{d}}u + \int_{0}^{t} {\int_{0}^{v} {\sigma_{r} e^{{ - a_{r} (v - u)}} {\text{d}}\widetilde{{W_{r} }}(u)} } {\text{d}}v $$
$$ = \int_{0}^{t} {f(0,u){\text{d}}u} + \int_{0}^{t} {\sigma_{r}^{2} (e^{{ - a_{r} u}} - 1)^{2} /(2a_{r}^{2} )} {\text{d}}u + \int_{0}^{t} {\int_{u}^{t} {\sigma_{r} e^{{ - a_{r} (v - u)}} {\text{d}}v{\text{d}}\widetilde{{W_{r} }}(u)} } $$
$$ = \int_{0}^{t} {f(0,u){\text{d}}u} + \int_{0}^{t} {\sigma_{r}^{2} (e^{{ - a_{r} u}} - 1)^{2} /(2a_{r}^{2} )} {\text{d}}u + \int_{0}^{t} {(\sigma_{r} /a_{r} )\left[ {1 - e^{{ - a_{r} (t - u)}} } \right]} {\text{d}}\widetilde{{W_{r} }}(u). $$
(34)

In a similar way, we can restate Eq. 26 as:

$$ s(t) = s(0,t) + \sigma_{s}^{2} (e^{{ - a_{s} t}} - 1)^{2} /(2a_{s}^{2} ) + \int_{0}^{t} {\sigma_{s} e^{{ - a_{s} (t - u)}} {\text{d}}\widetilde{{W_{s} }}(u)} , $$
(35)

Hence we obtain

$$ \int_{0}^{t} {s(u){\text{d}}u} = \int_{0}^{t} {f(0,u){\text{d}}u} + \int_{0}^{t} {\sigma_{s}^{2} (e^{{ - a_{s} u}} - 1)^{2} /(2a_{s}^{2} )} {\text{d}}u + \int_{0}^{t} {(\sigma_{s} /a_{s} )\left[ {1 - e^{{ - a_{s} (t - u)}} } \right]} {\text{d}}\widetilde{{W_{s} }}(u). $$
(36)

Equations 3336 are four normal random variables with the following respective means, variances and covariances.

$$ \mu_{1} (t) \equiv E\left( {\int_{0}^{t} {r(u){\text{d}}u} } \right) = \int_{0}^{t} {f(0,u){\text{d}}u} + \int_{0}^{t} {\left[ {\sigma_{r}^{2} \left( {\exp \left( { - a_{r} u} \right) - 1} \right)^{2} /(2a_{r}^{2} )} \right]} {\text{d}}u $$
$$ \mu_{2} (t) \equiv E\left( {r(t)} \right) = f(0,t) + \sigma_{r}^{2} \left( {\exp \left( { - a_{r} t} \right) - 1} \right)^{2} /(2a_{r}^{2} ) $$
$$ \mu_{3} (t) \equiv E\left( {\int_{0}^{t} {s(u){\text{d}}u} } \right) = \int_{0}^{t} {s(0,u){\text{d}}u} + \int_{0}^{t} {\left[ {\sigma_{s}^{2} \left( {\exp \left( { - a_{s} u} \right) - 1} \right)^{2} /(2a_{s}^{2} )} \right]} {\text{d}}u $$
$$ \mu_{4} (t) \equiv E\left( {s(t)} \right) = s(0,t) + \sigma_{s}^{2} \left( {\exp \left( { - a_{s} t} \right) - 1} \right)^{2} /(2a_{s}^{2} ) $$
$$ \sigma_{1}^{2} (t) \equiv Var\left( {\int_{0}^{t} {r(u){\text{d}}u} } \right) $$
$$ = Var\left( {\int_{0}^{t} {(\sigma_{r} /a_{r} )\left[ {1 - \exp \left( { - a_{r} (t - u)} \right)} \right]} d\widetilde{{W_{r} }}(u)} \right) $$
$$ = \int_{0}^{t} {\left[ {\sigma_{r}^{2} \left( {1 - \exp \left( { - a_{r} (t - u)} \right)} \right)^{2} /a_{r}^{2} } \right]} {\text{d}}u $$
$$ \sigma_{2}^{2} (t) \equiv Var\left( {r(t)} \right) $$
$$ = Var\left( {\int_{0}^{t} {\sigma_{r} \left( { - a_{r} (t - u)} \right)} {\text{d}}\widetilde{{W_{r} }}(u)} \right) $$
$$ = \int_{0}^{t} {\sigma_{r}^{2} \exp \left( { - 2a_{r} (t - u)} \right)} {\text{d}}u $$
$$ \sigma_{3}^{2} (t) \equiv Var\left( {\int_{0}^{t} {s(u){\text{d}}u} } \right) $$
$$ = Var\left( {\int_{0}^{t} {(\sigma_{s} /a_{s} )\left[ {1 - \exp \left( { - a_{s} (t - u)} \right)} \right]} {\text{d}}\widetilde{{W_{s} }}(u)} \right) $$
$$ = \int_{0}^{t} {\left[ {\sigma_{s}^{2} \left( {1 - \exp \left( { - a_{s} (t - u)} \right)} \right)^{2} /a_{s}^{2} } \right]} {\text{d}}u $$
$$ \sigma_{4}^{2} (t) \equiv Var\left( {s(t)} \right) $$
$$ = Var\left( {\int_{0}^{t} {\sigma_{s} \left( { - a_{s} (t - u)} \right)} {\text{d}}\widetilde{{W_{s} }}(u)} \right) $$
$$ = \int_{0}^{t} {\sigma_{s}^{2} \exp \left( { - 2a_{s} (t - u)} \right)} {\text{d}}u $$
$$ \sigma_{12} (t) \equiv \text{cov} \left( {\int_{0}^{t} {r(u){\text{d}}u,\;\;r(t)} } \right) $$
$$ = \text{cov} \left( {\int_{0}^{t} {(\sigma_{r} /a_{r} )\left[ {1 - \exp \left( { - a_{r} (t - u)} \right)} \right]} {\text{d}}\widetilde{{W_{r} }}(u),\;\;\int_{0}^{t} {\sigma_{r} \exp \left( { - a_{r} (t - u)} \right){\text{d}}\widetilde{{W_{r} }}(u)} } \right) $$
$$ = \int_{0}^{t} {(\sigma_{r}^{2} /a_{r} )\exp \left( { - a_{r} (t - u)} \right)\left[ {1 - \exp \left( { - a_{r} (t - u)} \right)} \right]} {\text{d}}u $$
$$ = \left( {\sigma_{r}^{2} /(2a_{r}^{2} )} \right)\left( {1 - \exp \left( { - a_{r} t} \right)^{2} } \right) $$
$$ \sigma_{13} (t) \equiv \text{cov} \left( {\int_{0}^{t} {r(u){\text{d}}u,\;\;\int_{0}^{t} {s(u){\text{d}}u} } } \right) $$
$$ = \text{cov} \left( {\int_{0}^{t} {{\frac{{\sigma_{r} }}{{a_{r} }}}\left[ {1 - \exp \left( { - a_{r} (t - u)} \right)} \right]} {\text{d}}\widetilde{{W_{r} }}(u),\;\;\int_{0}^{t} {{\frac{{\sigma_{s} }}{{a_{s} }}}\left[ {1 - \exp \left( { - a_{s} (t - u)} \right)} \right]} {\text{d}}\widetilde{{W_{s} }}(u)} \right) $$
$$ = \int_{0}^{t} {(\sigma_{r} \sigma_{s} \rho )\left[ {1 - \exp \left( { - a_{r} (t - u)} \right)} \right]} \left[ {1 - \exp \left( { - a_{s} (t - u)} \right)} \right]/(a_{r} a_{s} ){\text{d}}u $$
$$ \sigma_{14} (t) \equiv \text{cov} \left( {\int_{0}^{t} {r(u){\text{d}}u,\;\;s(t)} } \right) $$
$$ = \text{cov} \left( {\int_{0}^{t} {(\sigma_{r} /a_{r} )\left[ {1 - \exp \left( { - a_{r} (t - u)} \right)} \right]} {\text{d}}\widetilde{{W_{r} }}(u),\;\;\int_{0}^{t} {\sigma_{s} \exp \left( { - a_{s} (t - u)} \right)} {\text{d}}\widetilde{{W_{s} }}(u)} \right) $$
$$ = \int_{0}^{t} {(\sigma_{r} \sigma_{s} \rho )\left[ {1 - \exp \left( { - a_{r} (t - u)} \right)} \right]} \exp \left( { - a_{s} (t - u)} \right)/a_{r} {\text{d}}u $$
$$ \sigma_{23} (t) \equiv \text{cov} \left( {r(t),\;\;\int_{0}^{t} {s(u){\text{d}}u} } \right) $$
$$ = \text{cov} \left( {\int_{0}^{t} {\sigma_{r} \exp \left( { - a_{r} (t - u)} \right)} {\text{d}}\widetilde{{W_{r} }}(u),\;\;\int_{0}^{t} {(\sigma_{s} /a_{s} )\left[ {1 - \exp \left( { - a_{s} (t - u)} \right)} \right]} {\text{d}}\widetilde{{W_{s} }}(u)} \right) $$
$$ = \int_{0}^{t} {(\sigma_{r} \sigma_{s} \rho )\left[ {1 - \exp \left( { - a_{s} (t - u)} \right)} \right]} \exp \left( { - a_{r} (t - u)} \right)/a_{s} {\text{d}}u $$
$$ \sigma_{24} (t) \equiv \text{cov} \left( {r(t),\;s(t)} \right) $$
$$ = \text{cov} \left( {\int_{0}^{t} {\sigma_{r} \exp \left( { - a_{r} (t - u)} \right)} {\text{d}}\widetilde{{W_{r} }}(u),\;\;\int_{0}^{t} {\sigma_{s} \exp \left( { - a_{s} (t - u)} \right)} {\text{d}}\widetilde{{W_{s} }}(u)} \right) $$
$$ = \int_{0}^{t} {(\sigma_{r} \sigma_{s} \rho )} \exp \left( { - a_{r} (t - u) - a_{s} (t - u)} \right){\text{d}}u $$
$$ \sigma_{34} (t) \equiv \text{cov} \left( {\int_{0}^{t} {s(u){\text{d}}u} ,\;\;s(t)} \right) $$
$$ = \text{cov} \left( {\int_{0}^{t} {(\sigma_{s} /a_{s} )\left[ {1 - \exp \left( { - a_{s} (t - u)} \right)} \right]} {\text{d}}\widetilde{{W_{s} }}(u),\;\;\int_{0}^{t} {\sigma_{s} \exp \left( { - a_{s} (t - u)} \right){\text{d}}\widetilde{{W_{s} }}(u)} } \right) $$
$$ = \int_{0}^{t} {(\sigma_{s}^{2} /a_{s} )\exp \left( { - a_{s} (t - u)} \right)\left[ {1 - \exp \left( { - a_{s} (t - u)} \right)} \right]} {\text{d}}u $$
$$ = \left( {\sigma_{s}^{2} /(2a_{s}^{2} )} \right)\left( {1 - \exp \left( { - a_{s} t} \right)^{2} } \right) \quad{\text{Q.E.D.}}$$

Appendix 4: The derivation of Corollary 4.3

If we do not take default risk into consideration, our closed-form solution will reduce to those of Jarrow and van Deventer (1998). This can be obtained by setting the parameters of default risk related parameters as zero. We show the results as follows:

Let \( a_{s} = \sigma_{s} = \rho = s(t) = s(0,t) = 0 \), then the closed form solution will be reduced to

$$ V_{L} (0) = L(0)\exp \left( {c(0) - \left( {\alpha_{3} + \beta_{2} } \right)r(0)} \right)\int_{0}^{\tau } {\exp \left( {(\alpha_{0} + \beta_{0} )t + \alpha_{1} t^{2} /2} \right)}\,\cdot\,M\left( {t,\alpha_{2} + \beta_{1} - 1,\alpha_{3} + \beta_{2} } \right){\text{d}}t - L(0)\exp \left( { - \alpha_{3} r(0)} \right)\int_{0}^{\tau } {\exp \left( {\alpha_{0} t + \alpha_{1} t^{2} /2} \right)}\,\cdot\,M\left( {t,\alpha_{2} - 1,\alpha_{3} + 1} \right){\text{d}}t. $$

where \( M(t,\gamma_{1} ,\gamma_{2} ) = E_{0} \left( {e^{{\gamma_{1} x_{1} + \gamma_{2} x_{2} }} } \right) \)

$$ \; = \;\exp \left( {\mu_{1} \gamma_{1} + \mu_{2} \gamma_{2} + \left[ {\sigma_{1}^{2} \gamma_{1}^{2} + 2\sigma_{12} \gamma_{1} \gamma_{2} + \sigma_{2}^{2} \gamma_{2}^{2} } \right]/2} \right) $$
$$ \mu_{1} (t) \equiv \int_{0}^{t} {f(0,u){\text{d}}u} + \int_{0}^{t} {\left[ {\sigma_{r}^{2} \left( {\exp \left( { - a_{r} u} \right) - 1} \right)^{2} /(2a_{r}^{2} )} \right]} {\text{d}}u $$
$$ \mu_{2} (t) \equiv f(0,t) + \sigma_{r}^{2} \left( {\exp \left( { - a_{r} t} \right) - 1} \right)^{2} /(2a_{r}^{2} ) $$
$$ \sigma_{1}^{2} (t) \equiv \int_{0}^{t} {\left[ {\sigma_{r}^{2} \left( {1 - \exp \left( { - a_{r} (t - u)} \right)} \right)^{2} /a_{r}^{2} } \right]} {\text{d}}u $$
$$ \sigma_{2}^{2} (t) \equiv \int_{0}^{t} {\sigma_{r}^{2} \exp \left( { - 2a_{r} (t - u)} \right){\text{d}}u} $$
$$ \sigma_{12} (t) \equiv \left( {\sigma_{r}^{2} /(2a_{r}^{2} )} \right)\left( {1 - \exp \left( { - a_{r} t} \right)^{2} } \right) $$

The above pricing formula is exact the same as that of Jarrow and van Deventer (1998). Q.E.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Ho, RJ. & Lee, C. Pricing credit card loans with default risks: a discrete-time approach. Rev Quant Finan Acc 34, 413–438 (2010). https://doi.org/10.1007/s11156-009-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11156-009-0130-2

Keywords

JEL Classification

Navigation