Skip to main content
Log in

Population Variance under Interval Uncertainty: A New Algorithm

  • Published:
Reliable Computing

Abstract

In statistical analysis of measurement results, it is often beneficial to compute the range V of the population variance \(v=\frac{1}{2}\cdot\sum^{n}_{i=1}(x_{i}-E)^{2}\,(where E=\frac{1}{n}\sum^{n}_{i=1}x_{i})\) when we only know the intervals \([{\tilde x}_{i}-\Delta_{i},{\tilde x}_{i}+\Delta_{i}]\) of possible values of the xi. In general, this problem is NP-hard; a polynomialtime algorithm is known for the case when the measurements are sufficiently accurate, i.e., when \(|{\tilde x}_{i}-{\tilde x}_{j}|\geq\frac{\Delta_{i}}{n}+\frac{\Delta_{j}}{n}\) for all \(i\neq j.\) In this paper, we show that we can efficiently compute V under a weaker (and more general) condition \(|{\tilde x}_{i}-{\tilde x}_{j}|\geq\frac{|\Delta_{i}-\Delta_{j}|}{n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gormen, Th. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to Algorithms, MIT Press, Cambridge, 2001.

    Google Scholar 

  2. Person, S., Ginzburg, L., Kreinovich, V., Longpre, L., and Aviles, M.: Computing Variance for Interval Data Is NP-Hard, ACM SIGACTNews 33 (2) (2002), pp. 108–118.

    Article  Google Scholar 

  3. Person, S., Ginzburg, L., Kreinovich, V, Longpre, L., and Aviles, M.: Exact Bounds on Finite Populations of Interval Data, Reliable Computing 11 (3) (2005), pp. 207–233.

    Article  MathSciNet  Google Scholar 

  4. Granvilliers, L., Kreinovich, V, and Miiller, N.: Novel Approaches to Numerical Software with Result Verification, in: Alt, R., Frommer, A., Kearfott, R. B., and Luther, W. (eds), Numerical Software with Result Verification, Proceedings of the International Dagstuhl Seminar, Dagstuhl Castle, Germany, January 19–24, 2003, Springer Lectures Notes in Computer Science 2991, 2004. pp. 274–305.

  5. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer Verlag, London, 2001.

    MATH  Google Scholar 

  6. Kreinovich, V, Xiang, G., Starks, S. A., Longpre, L., Ceberio, M., Araiza, R., Beck, J., Kandathi, R., Nayak, A., Torres, R., and Hajagos, J.: Towards Combining Probabilistic and Interval Uncertainty in Engineering Calculations: Algorithms for Computing Statistics under Interval Uncertainty, and Their Computational Complexity, Reliable Computing (submitted).

  7. Rabinovich, S.: Measurement Errors: Theory and Practice, American Institute of Physics, New York, 1993.

    Google Scholar 

  8. Xiang, G.: Fast Algorithm for Computing the Upper Endpoint of Sample Variance for Interval Data: Case of Sufficiently Accurate Measurements, Reliable Computing 12 (1) (2006), pp. 59–64.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Dantsin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantsin, E., Kreinovich, V., Wolpert, A. et al. Population Variance under Interval Uncertainty: A New Algorithm. Reliable Comput 12, 273–280 (2006). https://doi.org/10.1007/s11155-006-9001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-006-9001-x

Keywords

Navigation