Skip to main content
Log in

Using Zonotopes for Overestimation-Free Interval Least-Squares–Some Geodetic Applications

  • Published:
Reliable Computing

Abstract

Interval methods are very convenient to describe the uncertainty of measurements and derived parameters in engineering sciences. In this paper, the geodetic determination of points in the 2d or 3d Euclidean space by least-squares estimation is studied. Up to now, two problems limited the applicability of interval mathematics. First, due to overestimation, interval boxes are too pessimistic uncertainty measures for point positions. Second, the shape of the interval boxes depends on the orientation of the geodetic coordinate system to parametrise the configuration. It is shown that both problems can be overcome by zonotopes which describe directly the factual range of the leastsquares problem with interval-valued observations. The advantages of this concept are discussed using typical geodetic network scenarios. In addition, the possible benefit for other engineering applications is motivated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Computer Science and Applied Mathematics, Academic Press, Boston, San Diego, New York, 1983.

    Google Scholar 

  2. Bjerhammar, A.: Theory of Errors and Generalized Matrix Inverses, Elsevier, Amsterdam, Lausanne, New York, 1973.

    Google Scholar 

  3. Braems, I., Berthier, F., Jaulin, L., Kieffer, M., and Walter, E.: Guaranteed Estimation of Electrochemical Parameters by Set Inversion Using Interval Analysis, Journal of Electroanalytical Chemistry 495(2000), pp. 1–9.

    Article  CAS  Google Scholar 

  4. Coxeter, H.: Regular Polytopes, 3 edition, Dover Publications, New York, 1973.

    Google Scholar 

  5. de Figueiredo, L. H. and Stolfi, J.: Affine Arithmetic: Concepts and Applications, Numerical Algorithms (2004), in print.

  6. de Figuieredo, L. H. and Stolfi, J.: Métodos numéricos auto-validados e aplicaçoes—Self-Validated Numerical Methods and Applications, Instituto de mathemática pura e aplicada, Rio de Janeiro, 1997.

    Google Scholar 

  7. Eppstein, D.: Zonohedra and Zonotopes, Tech.Report 95–53, 1995, http://www.ics.uci.edu/~eppstein

  8. Gawrilow, E. and Joswig, M.: polymake: a Framework for Analyzing Convex Polytopes, in: Kalai, G. and Ziegler, G. M. (eds): Polytopes—Combinatorics and Computation, Birkhäuser Verlag, Boston, Basel, Berlin, 2000, pp. 43–74.

    Google Scholar 

  9. Gawrilow, E. and Joswig, M.: polymake: an Approach to Modular Software Design in Computational Geometry, in: Proceedings of the 17th Annual Symposium on Computational Geometry, Medford, MA, June 3–5, 2001, pp. 222–231.

  10. Goodman, J. E. and O’Rourke, J.(eds): Handbook of Discrete and Computational Geometry, Discrete Mathematics and Its Applications, CRC Press, Boca Raton, New York, London, 1997.

    Google Scholar 

  11. Gruber, P. M. and Willis, J. M.(eds): Handbook of Convex Geometry—2 vol., Elsevier, Amsterdam, Lausanne, New York, 1993.

    Google Scholar 

  12. Heindl, G.: A Method for Verified Computing of Inner and Outer Approximations of the Interval Hull of a Tolerance Polyhedron, in: Alefeld, G., Frommer, A., and Lang, B.(eds), Scientific Computing and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 207–213.

    Google Scholar 

  13. Henk, M., Richter-Gebert, J., and Ziegler, G. M.: Basic Properties of Convex Polytopes, in: Goodman, J. E. and O’Rourke, J.(eds), Handbook of Discrete and Computational Geometry, Discrete Mathematics and Its Applications, CRC Press, Boca Raton, New York, London, 1997, pp. 243–270.

    Google Scholar 

  14. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis, Springer, London, Berlin, Heidelberg, 2001.

    Google Scholar 

  15. Kieffer, M., Jaulin, L., Walter, E., and Meizel, D.: Robust Autonomous Robot Localization Using Interval Analysis, Reliable Computing 6(3) (2000), pp. 337–362.

    Article  Google Scholar 

  16. Kreinovich, V.: Data Processing Beyond Traditional Statistics: Applications of Interval Computations. A Brief Introduction, Extended Abstracts of APIC’95 (Supplement to the International Journal of Reliable Computing), El Paso, 1995, pp. 13–21.

  17. Kühn, W.: Zonotope Dynamics in Numerical Quality Control, in: Hege, H.-C. and Polthier, K. (eds), Mathematical Visualization, Algorithms, Applications and Numerics, Springer, Berlin, Heidelberg, New York, 1998, pp. 125–134.

    Google Scholar 

  18. Kurzhanski, A. and Vàlyi, I.: Ellipsoidal Calculus for Estimation and Control, Birkhäuser Verlag, Boston, Basel, Berlin, 1997.

    Google Scholar 

  19. Kutterer, H.: Uncertainty Assessment in Geodetic Data Analysis, in: Carosio, A. and Kutterer, H. (eds), First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, Institute of Geodesy and Photogrammetry ETH Zurich, Bericht Nr. 295, 2001, pp. 7–12.

  20. Kutterer, H.: Joint Treatment of Random Variability and Imprecision in GPS Data Analysis, Journal of Global Positioning Systems 1(2) (2002), pp. 96–105.

    Google Scholar 

  21. Kutterer, H.: ZumUmgang mit Ungewissheit in der Geodäsie—Bausteine für eine neue Fehlertheorie, DGK Reihe C 553, Deutsche Geodätische Kommission, München, 2002.

  22. Milanese, M., Norton, J., Piet-Lahanier, H., and Walter, E.(eds): Bounding Approaches to System Identification, Plenium Press, New York, London, 1996.

    Google Scholar 

  23. Morales, D. and Son, T.C.: Interval Methods in Robot Navigation, Reliable Computing 4(1) (1998), pp. 55–61.

    Article  Google Scholar 

  24. Muhanna, R. L. and Mullen, R. L.: Uncertainty in Mechanics Problems—Interval-Based Approach, Journal of Engineering Mechanics 127(2001), pp. 557–566.

    Article  Google Scholar 

  25. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, New York, Port Chester, 1990.

    Google Scholar 

  26. Neumaier, A.: Taylor Forms—Use and Limits, Reliable Computing 9(1) (2003), pp. 43–79.

    Article  Google Scholar 

  27. Neumaier, A.: The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions, Computing—Supplement 9(1993), pp. 175–190.

    Google Scholar 

  28. Rembe, C., Hofer, E. P., and Tibken, B.: Model Based Identification as a New Tool to Extract Physical Parameters of Microactuators from Measurements with Error Bounds, in: Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems, 1999, pp. 276–279.

  29. Schön, S.: Analyse und Optimierung geodätischer Messanordungen unter besonderer Berücksichtigung des Intervallansatzes, DGK Reihe C 567, Deutsche Geodätische Kommission, München, 2003.

  30. Schön, S. and Kutterer, H.: Interval-Based Description of Measurement Uncertainties and Network Optimization, in: Carosio, A. and Kutterer, H. (eds): First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, Institute of Geodesy and Photogrammetry ETH Zurich, Bericht Nr.295, 2001, pp. 41–46.

  31. Schön, S. and Kutterer, H.: Network Optimization with Respect to Systematic Errors, in: Adam, J. and Schwarz, K.-P.(eds): Vistas for Geodesy in the New Millenium, International Association of Geodesy Symposia, Bd. 125, Springer, New York, Berlin, Heidelberg, 2002, pp. 329–334.

    Google Scholar 

  32. Schön, S. and Kutterer, H.: Realistic Uncertainty Measures for GPS Observations, in: Proceedings of the IUGG2003 General Meeting, Sapporo, Japan, International Association of Geodesy Symposia, Springer, New York, Berlin, Heidelberg, 2004, in print.

  33. Shephard, G. C.: Combinatorial Properties of Associated Zonotopes, Canadian Journal of Mathematics 26(2) (1974), pp. 302–321.

    Google Scholar 

  34. Torge, W.: Geodesy, 3 edition, Walter de Gruyter, Berlin, New York, 2001.

    Google Scholar 

  35. Viertl, R.: Statistical Methods for Non-Precise Data, CRC Press, Boca Raton, NewYork, London, 1996.

    Google Scholar 

  36. Walster, G. and Hansen, E. R.: Overdetermined (Tall) Systems of Nonlinear Equations, Sun Microsystems, 2002.

  37. Ziegler, G. M.: Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer, New York, Berlin, Heidelberg, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Schön.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, S., Kutterer, H. Using Zonotopes for Overestimation-Free Interval Least-Squares–Some Geodetic Applications. Reliable Comput 11, 137–155 (2005). https://doi.org/10.1007/s11155-005-3034-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-005-3034-4

Keywords

Navigation