Skip to main content

Advertisement

Log in

Lean NAFLD: an underrecognized and challenging disorder in medicine

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Classically, Non-Alcoholic Fatty Liver Disease (NAFLD) has been thought to be driven by excessive weight gain and obesity. The overall greater awareness of this disorder has led to its recognition in patients with normal body mass index (BMI). Ongoing research has helped to better understand potential causes of Lean NAFLD, the risks for more advanced disease, and potential therapies. Here we review the recent literature on prevalence, risk factors, severity of disease, and potential therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NAFLD:

Non-Alcoholic Fatty Liver Disease

BMI:

body mass index

BMI:

body mass index

MetS:

metabolic syndrome

MAFLD:

Metabolic Associated Fatty Liver Disease

T2DM:

type 2 diabetes

NASH:

Non-alcoholic steatohepatitis

WHO:

World Health Organization

AACE:

Association of Clinical Endocrinologists

FFA:

free fatty acids

PNPLA3:

patatin-like phospholipasedomain-containing 3

TM6SF2:

transmembrane 6-superfamily member 2

DAG:

diacylglyceral

di-PPA:

di-palmitoyl phosphatidic acid

AASLD:

American Association for the Study of Liver Disease

EASL:

European Association for the Study of Liver

EASD:

European Association for the Study of Diabetes

EASO:

European Association for the Study of Obesity

ADA:

American Diabetes Association

APASL:

Asian Pacific Association for the Study of the Liver

ALT:

Alanine transaminase

FLI:

fatty liver index

HCV:

hepatitis C

ACG:

American College of Gastroenterology

HFCS:

high fructose corn syrup

NHANES:

National Health and Nutrition Examination Survey

FIB-4:

fibrosis-4 index

NFS:

NAFLD fibrosis score

ATP:

adenosine triphosphate

LPS:

Lipopolysaccharide

TASH:

toxicant-associated steatohepatitis

HCC:

hepatocellular carcinoma

HSD17B13:

hydroxysteroid 17-beta dehydrogenase 13

CETP:

Cholesteryl Ester Transfer Protein

SREBF:

Sterol regulatory element-binding factor

GCKR:

Glucokinase Regulatory Protein

LFT:

liver function test

US:

ultrasound

DEXA:

Dual-energy X-ray absorptiometry

CAP:

Controlled Attenuation Parameter

TZD:

thiazolidinediones

(GLP-1) agonists:

glucagon like-peptide-1

DPP-4:

Dipeptidyl peptidase 4

DNL:

De novo Lipogenesis

References

  1. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology and Hepatology. 2018;15(1):11–20. https://doi.org/10.1038/nrgastro.2017.109.

    Article  PubMed  Google Scholar 

  2. Younossi ZM, Loomba R, Rinella ME, et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2018;68(1):361–71. https://doi.org/10.1002/hep.29724.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pais R, Barritt AS, Calmus Y, et al. NAFLD and liver transplantation: current burden and expected challenges. J Hepatol. 2016;65(6):1245–57. https://doi.org/10.1016/j.jhep.2016.07.033.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sookoian S, Pirola CJ. Systematic review with meta-analysis: risk factors for non-alcoholic fatty liver disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients. Aliment Pharmacol Ther. 2017;46(2):85–95. https://doi.org/10.1111/apt.14112.

    Article  CAS  PubMed  Google Scholar 

  5. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–9. https://doi.org/10.1016/j.jhep.2020.03.039.

    Article  PubMed  Google Scholar 

  6. Fouad Y, Waked I, Bollipo S, Gomaa A, Ajlouni Y, Attia D. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int. 2020;40(6):1254–61. https://doi.org/10.1111/liv.14478.

    Article  PubMed  Google Scholar 

  7. Niriella MA, Kasturiratne A, Pathmeswaran A, et al. Lean non-alcoholic fatty liver disease (lean NAFLD): characteristics, metabolic outcomes and risk factors from a 7-year prospective, community cohort study from Sri Lanka. Hepatol Int. 2019;13(3):314–22. https://doi.org/10.1007/s12072-018-9916-4.

    Article  PubMed  Google Scholar 

  8. Nishida C, Barba C, Cavalli-Sforza T, et al. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63. https://doi.org/10.1016/S0140-6736(03)15268-3.

    Article  Google Scholar 

  9. Timothy Garvey W, Mechanick JI, Brett EM, et al. AACE/ACE guidelines american association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocrine Practice. 2016;22(3). https://doi.org/10.4158/EP161365.GL.

  10. Kim MK, Lee WY, Kang JH, et al. 2014 clinical practice guidelines for overweight and obesity in Korea. Endocrinol Metab. 2014;29(4):405–9. https://doi.org/10.3803/EnM.2014.29.4.405.

    Article  Google Scholar 

  11. Naderian M, Kolahdoozan S, Sharifi AS, et al. Assessment of lean patients with non-alcoholic fatty liver disease in a middle income country; Prevalence and its association with metabolic disorders: A cross-sectional study. Archives of Iranian Medicine. 2017;20(4):211–7 0172004/AIM.005.

    PubMed  Google Scholar 

  12. Petta S, Gastaldelli A, Rebelos E, et al. Pathophysiology of non alcoholic fatty liver disease. International Journal of Molecular Sciences. 2016;17(12). https://doi.org/10.3390/ijms17122082.

  13. Wattacheril J, Sanyal AJ. Lean NAFLD: an underrecognized outlier. Curr Hepatol Reports. 2016;15(2):134–9. https://doi.org/10.1007/s11901-016-0302-1.

    Article  Google Scholar 

  14. Lonardo A, Nascimbeni F, Maurantonio M, Marrazzo A, Rinaldi L, Adinolfi LE. Nonalcoholic fatty liver disease: evolving paradigms. World J Gastroenterol. 2017;23(36):6571–92. https://doi.org/10.3748/wjg.v23.i36.6571.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Conjeevaram Selvakumar PK, Kabbany MN, Lopez R, Rayas MS, Lynch JL, Alkhouri N. Prevalence of suspected nonalcoholic fatty liver disease in lean adolescents in the United States. J Pediatr Gastroenterol Nutr. 2018;67(1):75–9. https://doi.org/10.1097/MPG.0000000000001974.

    Article  PubMed  Google Scholar 

  16. Das KK, Das KK, Mukherjee PS, et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology. 2010;51(5):1593–602. https://doi.org/10.1002/hep.23567.

    Article  CAS  PubMed  Google Scholar 

  17. Younossi ZM, Stepanova M, Negro F, et al. Nonalcoholic fatty liver disease in lean individuals in the United States. Medicine. 2012;91(6):319–27. https://doi.org/10.1097/MD.0b013e3182779d49.

    Article  PubMed  Google Scholar 

  18. Sinn DH, Kang D, Cho SJ, et al. Lean non-alcoholic fatty liver disease and development of diabetes: a cohort study. Eur J Endocrinol. 2019;181(2):185–92. https://doi.org/10.1530/EJE-19-0143.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon YM, Oh SW, Hwang SS, Lee C, Kwon H, Chung GE. Association of nonalcoholic fatty liver disease with components of metabolic syndrome according to body mass index in Korean adults. Am J Gastroenterol. 2012;107(12):1852–8. https://doi.org/10.1038/ajg.2012.314.

    Article  CAS  PubMed  Google Scholar 

  20. Wei JL, Leung JCF, Loong TCW, et al. Prevalence and severity of nonalcoholic fatty liver disease in non-obese patients: a population study using proton-magnetic resonance spectroscopy. Am J Gastroenterol. 2015;110(9):1306–14. https://doi.org/10.1038/ajg.2015.235.

    Article  CAS  PubMed  Google Scholar 

  21. Feng RN, Du SS, Wang C, et al. Lean-non-alcoholic fatty liver disease increases risk for metabolic disorders in a normal weight Chinese population. World J Gastroenterol. 2014;20(47):17932–40. https://doi.org/10.3748/wjg.v20.i47.17932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cho HC. Prevalence and factors associated with nonalcoholic fatty liver disease in a nonobese Korean population. Gut and Liver. 2016;10(1):117–25. https://doi.org/10.5009/gnl14444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. https://doi.org/10.1002/hep.29367.

    Article  PubMed  Google Scholar 

  24. Marchesini G, Day CP, Dufour JF, et al. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–402. https://doi.org/10.1016/j.jhep.2015.11.004.

    Article  Google Scholar 

  25. Association AD. 4. Comprehensive medical evaluation and assessment of comorbidities: Standards of medical care in diabetesd 2019. Diabetes Care. 2019;42(Supplement 1):S34–45. https://doi.org/10.2337/dc19-S004.

    Article  Google Scholar 

  26. Vos MB, Abrams SH, Barlow SE, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the expert committee on NAFLD (ECON) and the north american society of pediatric gastroenterology, hepatology and nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64(2):319–34. https://doi.org/10.1097/MPG.0000000000001482.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Estrada E, Eneli I, Hampl S, et al. Children’s hospital association consensus statements for comorbidities of childhood obesity. Child Obes. 2014;10(4):304–17. https://doi.org/10.1089/chi.2013.0120.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4). https://doi.org/10.1542/peds.2007-2329C.

  29. Eslam M, Sarin SK, Wong VWS, et al. The asian pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 2020. https://doi.org/10.1007/s12072-020-10094-2.

  30. Jensen T, Wieland A, Cree-Green M, Nadeau K, Sullivan S. Clinical workup of fatty liver for the primary care provider. Postgrad Med. 2019;131(1):19–30. https://doi.org/10.1080/00325481.2019.1546532.

    Article  PubMed  Google Scholar 

  31. Kotronen A, Peltonen M, Hakkarainen A, et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865–72. https://doi.org/10.1053/j.gastro.2009.06.005.

    Article  CAS  PubMed  Google Scholar 

  32. Cuthbertson DJ, Weickert MO, Lythgoe D, et al. External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. Eur J Endocrinol. 2014;171(5):561–9. https://doi.org/10.1530/EJE-14-0112.

    Article  CAS  PubMed  Google Scholar 

  33. Kaya E, Bakir A, Kani HT, Demirtas CO, Keklikkiran C, Yilmaz Y. Simple noninvasive scores are clinically useful to exclude, not predict, advanced fibrosis: a study in turkish patients with biopsy-proven nonalcoholic fatty liver disease. Gut Liver. 2020;14(4):486–91. https://doi.org/10.5009/gnl19173.

    Article  CAS  PubMed  Google Scholar 

  34. Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7(10):1104–12. https://doi.org/10.1016/j.cgh.2009.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eren F, Kaya E, Yilmaz Y. Accuracy of Fibrosis-4 index and non-alcoholic fatty liver disease fibrosis scores in metabolic (dysfunction) associated fatty liver disease according to body mass index: failure in the prediction of advanced fibrosis in lean and morbidly obese individuals. Eur J Gastroenterol Hepatol. 2020.

  36. Hsu CL, Wu FZ, Lin KH, et al. Role of fatty liver index and metabolic factors in the prediction of nonalcoholic fatty liver disease in a lean population receiving health checkup. Clinical and Translational Gastroenterology. 2019;10(5). https://doi.org/10.14309/ctg.0000000000000042.

  37. Bedogni G, Bellentani S, Miglioli L, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6. https://doi.org/10.1186/1471-230X-6-33.

  38. Bertot LC, Adams LA. The natural course of non-alcoholic fatty liver disease. International Journal of Molecular Sciences. 2016;17(5). https://doi.org/10.3390/ijms17050774.

  39. Denkmayr L, Feldman A, Stechemesser L, et al. Lean patients with non-alcoholic fatty liver disease have a severe histological phenotype similar to obese patients. J Clin Med. 2018;7(12):562. https://doi.org/10.3390/jcm7120562.

    Article  PubMed Central  Google Scholar 

  40. Rinaldi L, Valente G, Piai G. Serial liver stiffness measurements and monitoring of liver-transplanted patients in a real-life clinical practice. Hepatitis Monthly. 2016;16(12). https://doi.org/10.5812/hepatmon.41162.

  41. Yilmaz Y. NAFLD in the absence of metabolic syndrome: different epidemiology, pathogenetic mechanisms, risk factors for disease progression? Semin Liver Dis. 2012;32(1):14–21.

    Article  CAS  Google Scholar 

  42. Albhaisi S, Chowdhury A, Sanyal AJ. Non-alcoholic fatty liver disease in lean individuals. JHEP Reports. 2019;1(4):329–41. https://doi.org/10.1016/j.jhepr.2019.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li C, Guo P, Okekunle AP, et al. Lean non-alcoholic fatty liver disease patients had comparable total caloric, carbohydrate, protein, fat, iron, sleep duration and overtime work as obese non-alcoholic fatty liver disease patients. J Gastroenterology and Hepatology (Australia). 2019;34(1):256–62. https://doi.org/10.1111/jgh.14360.

    Article  CAS  Google Scholar 

  44. Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063–75. https://doi.org/10.1016/j.jhep.2018.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. J Nutr. 2008;138(6):604S–15S. https://doi.org/10.1093/jn/138.6.1039.

    Article  Google Scholar 

  46. Ouyang X, Cirillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993–9. https://doi.org/10.1016/j.jhep.2008.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51(6):1961–71. https://doi.org/10.1002/hep.23535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ishimoto T, Lanaspa MA, Rivard CJ, et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology. 2013;58(5):1632–43. https://doi.org/10.1002/hep.26594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lanaspa MA, Ishimoto T, Li N, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun. 2013;4:1–8. https://doi.org/10.1038/ncomms3434.

    Article  CAS  Google Scholar 

  50. Lanaspa MA, Kuwabara M, Andres-Hernando A, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci U S A. 2018;115(12):3138–43. https://doi.org/10.1073/pnas.1713837115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roncal-Jimenez CA, Lanaspa MA, Rivard CJ, et al. Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake. Metab Clin Exp. 2011;60(9):1259–70. https://doi.org/10.1016/j.metabol.2011.01.008.

    Article  CAS  PubMed  Google Scholar 

  52. Slone D, Taitz LS, Gilchrist GS. Aspects of carbohydrate metabolism in kwashiorkor. Br Med J. 1961;1(5218):32–4. https://doi.org/10.1136/bmj.1.5218.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Williams CD. Kwashiorkor: a nutritional disease of children associated with a maize diet. 1935. Lancet 1935;ii:1151–1152 Reprinted in Bulletin of the World Health Organization. 2003;81(12):912–913. https://doi.org/10.1590/S0042-96862003001200011

  54. Assy N, Nasser G, Kamayse I, et al. Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can J Gastroenterol. 2008;22(10):811–6. https://doi.org/10.1155/2008/810961.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J Hepatol. 2007;47(5):711–7. https://doi.org/10.1016/j.jhep.2007.06.020.

    Article  CAS  PubMed  Google Scholar 

  56. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287(48):40732–44. https://doi.org/10.1074/jbc.M112.399899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bergheim I, Weber S, Vos M, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol. 2008;48(6):983–92. https://doi.org/10.1016/j.jhep.2008.01.035.

    Article  CAS  PubMed  Google Scholar 

  58. Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. Fructose promotes leaky gut, Endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1–mediated oxidative and nitrative stress. Hepatology. 2019. https://doi.org/10.1002/hep.30652.

  59. Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci. 2019;76(8):1541–58. https://doi.org/10.1007/s00018-019-03011-w.

    Article  CAS  PubMed  Google Scholar 

  60. Yun Y, Kim HN, Lee E ju, et al. Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS ONE. 2019;14(3). https://doi.org/10.1371/journal.pone.0213692

  61. Chen F, Esmaili S, Rogers GB, et al. Lean NAFLD: a distinct entity shaped by differential metabolic adaptation. Hepatology. January 2020:hep.30908. https://doi.org/10.1002/hep.30908

  62. Ma J, Zhou Q, Li H. Gut microbiota and nonalcoholic fatty liver disease: Insights on mechanisms and therapy. Nutrients. 2017;9(10). https://doi.org/10.3390/nu9101124.

  63. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E. The role of the microbiome in NAFLD and NASH. EMBO Molecular Medicine. 2019;11(2). https://doi.org/10.15252/emmm.201809302.

  64. Adejumo AC, Alliu S, Ajayi TO, et al. Cannabis use is associated with reduced prevalence of non-alcoholic fatty liver disease: A cross-sectional study. PLoS ONE. 2017;12(4). https://doi.org/10.1371/journal.pone.0176416

  65. Kim D, Kim W, Kwak MS, Chung GE, Yim JY, Ahmed A. Inverse association of marijuana use with nonalcoholic fatty liver disease among adults in the United States. PLoS ONE. 2017;12(10). https://doi.org/10.1371/journal.pone.0186702.

  66. Farooqui MT, Khan MA, Cholankeril G, et al. Marijuana is not associated with progression of hepatic fibrosis in liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2019;31(2):149–56. https://doi.org/10.1097/MEG.0000000000001263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Purohit V, Rapaka R, Shurtleff D. Role of cannabinoids in the development of fatty liver (steatosis). AAPS Journal. 2010;12(2):233–7. https://doi.org/10.1208/s12248-010-9178-0.

    Article  CAS  Google Scholar 

  68. Lin YC, Lian I bin, Kor CT, et al. Association between soil heavy metals and fatty liver disease in men in Taiwan: A cross sectional study. BMJ Open. 2017;7(1). https://doi.org/10.1136/bmjopen-2016-014215

  69. Cave M, Falkner KC, Ray M, et al. Toxicant-associated steatohepatitis in vinyl chloride workers. Hepatology. 2010;51(2):474–81. https://doi.org/10.1002/hep.23321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cotrim HP, de Freitas LAR, Freitas C, et al. Clinical and histopathological features of NASH in workers exposed to chemicals with or without associated metabolic conditions. Liver Int. 2004;24(2):131–5. https://doi.org/10.1111/j.1478-3231.2004.0897.x.

    Article  PubMed  Google Scholar 

  71. Kumarendran B, O’Reilly MW, Manolopoulos KN, et al. Polycystic ovary syndrome, androgen excess, and the risk of nonalcoholic fatty liver disease in women: A longitudinal study based on a United Kingdom primary care database. Myers JE, ed. PLOS Medicine. 2018;15(3):e1002542. https://doi.org/10.1371/journal.pmed.1002542

  72. Cree-Green M, Rahat H, Newcomer BR, et al. Insulin resistance, Hyperinsulinemia, and mitochondria dysfunction in nonobese girls with polycystic ovarian syndrome. Journal of the Endocrine Society. 2017;1(7):931–44. https://doi.org/10.1210/js.2017-00192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pang Q, Zhou L, Jin H, Man ZR, Liu HC. Letter: non-alcoholic fatty liver disease and polycystic ovary syndrome-evidence for low vitamin D status contributing to the link. Aliment Pharmacol Ther. 2017;46(5):566–7. https://doi.org/10.1111/apt.14159.

    Article  CAS  PubMed  Google Scholar 

  74. Kim JJ, Kim D, Yim JY, et al. Polycystic ovary syndrome with hyperandrogenism as a risk factor for non-obese non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2017;45(11):1403–12. https://doi.org/10.1111/apt.14058.

    Article  CAS  PubMed  Google Scholar 

  75. Del Campo JA, Gallego-Duran R, Gallego P, Grande L. Genetic and epigenetic regulation in nonalcoholic fatty liver disease (NAFLD). Int J Mol Sci. 2018;19(3).

  76. Petersen KF, Dufour S, Hariri A, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362(12):1082–9. https://doi.org/10.1056/NEJMoa0907295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5. https://doi.org/10.1038/ng.257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abul-Husn NS, Cheng X, Li AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med. 2018;378(12):1096–106. https://doi.org/10.1056/NEJMoa1712191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fracanzani AL, Petta S, Lombardi R, et al. Liver and cardiovascular damage in patients with lean nonalcoholic fatty liver disease, and association with visceral obesity. Clinical Gastroenterology and Hepatology. 2017;15(10):1604–1611.e1. https://doi.org/10.1016/j.cgh.2017.04.045.

    Article  PubMed  Google Scholar 

  80. Feldman A, Eder SK, Felder TK, et al. Clinical and metabolic characterization of lean Caucasian subjects with non-alcoholic fatty liver. Am J Gastroenterol. 2017;112(1):102–10. https://doi.org/10.1038/ajg.2016.318.

    Article  PubMed  Google Scholar 

  81. Trépo E, Romeo S, Zucman-Rossi J, Nahon P. PNPLA3 gene in liver diseases. J Hepatol. 2016;65(2):399–412. https://doi.org/10.1016/j.jhep.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  82. Pingitore P, Romeo S. The role of PNPLA3 in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(6):900–6. https://doi.org/10.1016/j.bbalip.2018.06.018.

    Article  CAS  PubMed  Google Scholar 

  83. Shen J, Wong GLH, Chan HLY, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. Journal of Gastroenterology and Hepatology (Australia). 2015;30(1):139–46. https://doi.org/10.1111/jgh.12656.

    Article  CAS  Google Scholar 

  84. Nishioji K, Mochizuki N, Kobayashi M, et al. The impact of PNPLA3 rs738409 genetic polymorphism and weight gain ≥10 kg after age 20 on non-alcoholic fatty liver disease in non-obese Japanese individuals. PLoS ONE. 2015;10(10). https://doi.org/10.1371/journal.pone.0140427

  85. Honda Y, Yoneda M, Kessoku T, et al. Characteristics of non-obese non-alcoholic fatty liver disease: effect of genetic and environmental factors. Hepatol Res. 2016;46(10):1011–8. https://doi.org/10.1111/hepr.12648.

    Article  CAS  PubMed  Google Scholar 

  86. Fan JG, Kim SU, Wong VWS. New trends on obesity and NAFLD in Asia. J Hepatol. 2017;67(4):862–73. https://doi.org/10.1016/j.jhep.2017.06.003.

    Article  PubMed  Google Scholar 

  87. Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46(4):352–6. https://doi.org/10.1038/ng.2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wong VWS, Wong GLH, Tse CH, Chan HLY. Prevalence of the TM6SF2 variant and non-alcoholic fatty liver disease in Chinese. J Hepatol. 2014;61(3):708–9. https://doi.org/10.1016/j.jhep.2014.04.047.

    Article  CAS  PubMed  Google Scholar 

  89. Luukkonen PK, Tukiainen T, Juuti A, et al. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. JCI Insight. 2020;5(5). https://doi.org/10.1172/jci.insight.132158.

  90. Kim D, Kim WR. Nonobese fatty liver disease. Clin Gastroenterol Hepatol. 2017;15(4):474–85. https://doi.org/10.1016/j.cgh.2016.08.028.

    Article  CAS  PubMed  Google Scholar 

  91. Adams LA, Marsh JA, Ayonrinde OT, et al. Cholesteryl ester transfer protein gene polymorphisms increase the risk of fatty liver in females independent of adiposity. Journal of Gastroenterology and Hepatology (Australia). 2012;27(9):1520–7. https://doi.org/10.1111/j.1440-1746.2012.07120.x.

    Article  CAS  PubMed  Google Scholar 

  92. Musso G, Cassader M, Bo S, de Michieli F, Gambino R. Sterol regulatory element-binding factor 2 (SREBF-2) predicts 7-year NAFLD incidence and severity of liver disease and lipoprotein and glucose dysmetabolism. Diabetes. 2013;62(4):1109–20. https://doi.org/10.2337/db12-0858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Santoro N, Caprio S, Pierpont B, van Name M, Savoye M, Parks EJ. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. J Clin Endocrinol Metab. 2015;100(8):E1125–32. https://doi.org/10.1210/jc.2015-1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Petta S, Miele L, Bugianesi E, et al. Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non-alcoholic fatty liver disease. PLoS ONE. 2014;9(2). https://doi.org/10.1371/journal.pone.0087523

  95. Gao H, Liu S, Zhao Z, et al. Association of GCKR gene polymorphisms with the risk of nonalcoholic fatty liver disease and coronary artery disease in a chinese northern han population. Journal of Clinical and Translational Hepatology. 2019;X(X):1–7. https://doi.org/10.14218/jcth.2019.00030.

    Article  Google Scholar 

  96. Mohammadi S, Farajnia S, Shadmand M, Mohseni F, Baghban R. Association of rs780094 polymorphism of glucokinase regulatory protein with non-alcoholic fatty liver disease. BMC Research Notes. 2020;13(1). https://doi.org/10.1186/s13104-020-4891-y.

  97. Lin YC, Chang PF, Chang MH, Ni YH. Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals. Am J Clin Nutr. 2014;99(4):869–74. https://doi.org/10.3945/ajcn.113.079749.

    Article  CAS  PubMed  Google Scholar 

  98. Gambarin-Gelwan M, Kinkhabwala S. V., Schiano TD, Bodian C, Yeh HC, Futterweit W. prevalence of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Clin Gastroenterol Hepatol. 2007;5(4):496–501. https://doi.org/10.1016/j.cgh.2006.10.010.

    Article  PubMed  Google Scholar 

  99. Gonzalez-Cantero J, Martin-Rodriguez JL, Gonzalez-Cantero A, Arrebola JP, Gonzalez-Calvin JL. Insulin resistance in lean and overweight nondiabetic Caucasian adults: Study of its relationship with liver triglyceride content, waist circumference and BMI. PLoS ONE. 2018;13(2). https://doi.org/10.1371/journal.pone.0192663.

  100. Kumar R, Rastogi A, Sharma M, et al. Clinicopathological characteristics and metabolic profiles of non-alcoholic fatty liver disease in Indian patients with normal body mass index: do they differ from obese or overweight non-alcoholic fatty liver disease? Indian Journal of Endocrinology and Metabolism. 2013;17(4):665. https://doi.org/10.4103/2230-8210.113758.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37(4):917–23. https://doi.org/10.1053/jhep.2003.50161.

    Article  PubMed  Google Scholar 

  102. Fracanzani AL, Valenti L, Bugianesi E, et al. Risk of nonalcoholic steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease and low visceral adiposity. J Hepatol. 2011;54(6):1244–9. https://doi.org/10.1016/j.jhep.2010.09.037.

    Article  CAS  PubMed  Google Scholar 

  103. Keating SE, Hackett DA, Parker HM, et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J Hepatol. 2015;63(1):174–82. https://doi.org/10.1016/j.jhep.2015.02.022.

    Article  PubMed  Google Scholar 

  104. st. George A, Bauman A, Johnston A, Farrell G, Chey T, George J. Independent effects of physical activity in patients with nonalcoholic fatty liver disease. Hepatology 2009;50(1):68–76. https://doi.org/10.1002/hep.22940.

  105. Winn NC, Liu Y, Rector RS, Parks EJ, Ibdah JA, Kanaley JA. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity — a randomized trial. Metab Clin Exp. 2018;78:128–40. https://doi.org/10.1016/j.metabol.2017.08.012.

    Article  CAS  PubMed  Google Scholar 

  106. Kim HK, Park JY, Lee KU, et al. Effect of body weight and lifestyle changes on long-term course of nonalcoholic fatty liver disease in Koreans. Am J Med Sci. 2009;337(2):98–102.

    Article  Google Scholar 

  107. Rabøl R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705–9. https://doi.org/10.1073/pnas.1110105108.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Holt HB, Wild SH, Wareham N, et al. Differential effects of fatness, fitness and physical activity energy expenditure on whole-body, liver and fat insulin sensitivity. Diabetologia. 2007;50(8):1698–706. https://doi.org/10.1007/s00125-007-0705-1.

    Article  CAS  PubMed  Google Scholar 

  109. Devries MC, Samjoo IA, Hamadeh MJ, Tarnopolsky MA. Effect of endurance exercise on hepatic lipid content, enzymes, and adiposity in men and women. Obesity. 2008;16(10):2281–8. https://doi.org/10.1038/oby.2008.358.

    Article  CAS  PubMed  Google Scholar 

  110. Zelber-Sagi S, Buch A, Yeshua H, et al. Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J Gastroenterol. 2014;20(15):4382–92. https://doi.org/10.3748/wjg.v20.i15.4382.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Akyuz U, Yesil A, Yilmaz Y. Characterization of lean patients with nonalcoholic fatty liver disease: potential role of high hemoglobin levels. Scand J Gastroenterol. 2015;50(3):341–6. https://doi.org/10.3109/00365521.2014.983160.

    Article  CAS  PubMed  Google Scholar 

  112. Montesi L, Caselli C, Centis E, et al. Physical activity support or weight loss counseling for nonalcoholic fatty liver disease? World J Gastroenterol. 2014;29:10128–36. https://doi.org/10.3748/wjg.v20.i29.10128.

    Article  Google Scholar 

  113. Moscatiello S, Di Luzio R, Bugianesi E, et al. Cognitive-behavioral treatment of nonalcoholic fatty liver disease: a propensity score-adjusted observational study. Obesity (Silver Spring). 2011;19(4):763–70.

    Article  Google Scholar 

  114. Hamurcu Varol P, Kaya E, Alphan E, Yilmaz Y. Role of intensive dietary and lifestyle interventions in the treatment of lean nonalcoholic fatty liver disease patients. Eur J Gastroenterol Hepatol. December 2019. https://doi.org/10.1097/meg.0000000000001656.

  115. Thiagarajan P, Aithal GP. Drug development for nonalcoholic fatty liver disease: landscape and challenges. Journal of Clinical and Experimental Hepatology. 2019;9(4):515–21. https://doi.org/10.1016/j.jceh.2019.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sanyal AJ, Chalasani N, Kowdley K v., et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362(18):1675–1685. doi:https://doi.org/10.1056/NEJMoa0907929.

  117. Abner EL, Schmitt FA, Mendiondo MS, Marcum JL, Kryscio RJ. Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci. 2011;4(2):158–70.

    Article  CAS  Google Scholar 

  118. El Hadi H, Vettor R, Rossato M. Vitamin E as a treatment for nonalcoholic fatty liver disease: reality or myth? Antioxidants (Basel). 2018;7(1).

  119. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37–46.

    Article  CAS  Google Scholar 

  120. Pacana T, Sanyal AJ. Vitamin E and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2012;15(6):641–8.

    Article  CAS  Google Scholar 

  121. Klein EA, Thompson IM Jr, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2011;306(14):1549–56.

    Article  CAS  Google Scholar 

  122. Schurks M, Glynn RJ, Rist PM, Tzourio C, Kurth T. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ. 2010;341:c5702.

    Article  Google Scholar 

  123. Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184–96. https://doi.org/10.1016/S0140-6736(19)33041-7.

    Article  CAS  PubMed  Google Scholar 

  124. Ipsen DH, Rolin B, Rakipovski G, et al. Liraglutide decreases hepatic inflammation and injury in advanced lean non-alcoholic Steatohepatitis. Basic Clin Pharmacol Toxicol. 2018;123(6):704–13. https://doi.org/10.1111/bcpt.13082.

    Article  CAS  PubMed  Google Scholar 

  125. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–90. https://doi.org/10.1016/S0140-6736(15)00803-X.

    Article  CAS  PubMed  Google Scholar 

  126. Cruz AC dela, Bugianesi E, George J, et al. 379 Characteristics and long-term prognosis of lean patients with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(5):S-909. https://doi.org/10.1016/s0016-5085(14)63307-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jensen.

Ethics declarations

Conflict of interest disclosure

SM, AW, MCG, KN, SS, and TJ have no conflicts of interest to report. RJ and ML have equity with Colorado Research Partners LLC that is developing inhibitors of fructose metabolism. RJ also has equity with XORTX Therapeutics that is developing novel xanthine oxidase inhibitors. RJ also has consulted for Astra Zeneca and Horizon Pharma. RJ and ML are inventors on several patents and patent applications related to fructose metabolism.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, S., Wieland, A., Cree-Green, M. et al. Lean NAFLD: an underrecognized and challenging disorder in medicine. Rev Endocr Metab Disord 22, 351–366 (2021). https://doi.org/10.1007/s11154-020-09621-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09621-1

Keywords

Navigation