Skip to main content

Advertisement

Log in

Shedding new light on female fertility: The role of vitamin D

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

In the last decades several studies suggested that vitamin D is involved in the modulation of the reproductive process in women due to the expression of VDR and 1α-hydroxylase in reproductive tissues such as ovary, uterus, placenta, pituitary and hypothalamus. Vitamin D has also a role in the regulation of sex hormone steroidogenesis. Increasing evidence suggests that vitamin D might have a regulatory role in polycystic ovary syndrome (PCOS)-associated symptoms, including ovulatory dysfunction, insulin resistance and hyperandrogenism. Vitamin D deficiency also has been reported to contribute to the pathogenesis of endometriosis due to its immunomodulatory and anti-inflammatory properties. Although most of the studies supported a role of vitamin D in the onset of these diseases, randomized controlled trials to assess the efficacy of vitamin D supplementation have never been performed. In this review we critically discuss the role of vitamin D in female fertility, starting from in vitro and in vivo studies, focusing our attention on the two most frequent causes of female infertility: PCOS and endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bhan I. Vitamin d binding protein and bone health. Int J Endocrinol. 2014;2014:561214. doi:10.1155/2014/561214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Muscogiuri G, Altieri B, Annweiler C, Balercia G, Pal HB, Boucher BJ, et al. Vitamin D and chronic diseases: the current state of the art. Arch Toxicol. 2016; doi:10.1007/s00204-016-1804-x.

    Google Scholar 

  3. Muscogiuri G, Mitri J, Mathieu C, Badenhoop K, Tamer G, Orio F, et al. Mechanisms in endocrinology: vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol / European Federation of Endocrine Societies. 2014;171(3):R101–10. doi:10.1530/EJE-14-0158.

    Article  CAS  Google Scholar 

  4. D'Aurizio F, Villalta D, Metus P, Doretto P, Tozzoli R. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases? Autoimmun Rev. 2015;14(5):363–9. doi:10.1016/j.autrev.2014.10.008.

    Article  PubMed  CAS  Google Scholar 

  5. Muscogiuri G, Altieri B, Penna-Martinez M, Badenhoop K. Focus on vitamin D and the adrenal gland. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2015;47(4):239–46. doi:10.1055/s-0034-1396893.

  6. Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients. 2013;5(10):3993–4021. doi:10.3390/nu5103993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Altieri B, Grant WB, Casa SD, Orio F, Pontecorvi A, Colao A, et al. Vitamin D and pancreas: the role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit Rev Food Sci Nutr. 2016; doi:10.1080/10408398.2015.1136922.

    Google Scholar 

  8. Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26–34. doi:10.1210/jc.2008-1454.

    Article  CAS  PubMed  Google Scholar 

  9. van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97(1–2):93–101. doi:10.1016/j.jsbmb.2005.06.002.

    Article  PubMed  CAS  Google Scholar 

  10. Lerchbaum E, Obermayer-Pietsch B. Vitamin D and fertility: a systematic review. Eur J Endocrinol / European Federation of Endocrine Societies. 2012;166(5):765–78. doi:10.1530/EJE-11-0984.

    Article  CAS  Google Scholar 

  11. Anagnostis P, Karras S, Goulis DG. Vitamin D in human reproduction: a narrative review. Int J Clin Pract. 2013;67(3):225–35. doi:10.1111/ijcp.12031.

    Article  CAS  PubMed  Google Scholar 

  12. Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology. 2000;141(4):1317–24. doi:10.1210/endo.141.4.7403.

    Article  CAS  PubMed  Google Scholar 

  13. Halhali A, Acker GM, Garabedian M. 1,25-dihydroxyvitamin D3 induces in vivo the decidualization of rat endometrial cells. J Reprod Fertil. 1991;91(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  14. Rojansky N, Brzezinski A, Schenker JG. Seasonality in human reproduction: an update. Hum Reprod. 1992;7(6):735–45.

    Article  CAS  PubMed  Google Scholar 

  15. Thill M, Becker S, Fischer D, Cordes T, Hornemann A, Diedrich K, et al. Expression of prostaglandin metabolising enzymes COX-2 and 15-PGDH and VDR in human granulosa cells. Anticancer Res. 2009;29(9):3611–8.

    CAS  PubMed  Google Scholar 

  16. Parikh G, Varadinova M, Suwandhi P, Araki T, Rosenwaks Z, Poretsky L et al. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2010;42(10):754–7. doi:10.1055/s-0030-1262837.

  17. Weisman Y, Harell A, Edelstein S, David M, Spirer Z, Golander A. 1 alpha, 25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature. 1979;281(5729):317–9.

    Article  CAS  PubMed  Google Scholar 

  18. Tanamura A, Nomura S, Kurauchi O, Furui T, Mizutani S, Tomoda Y. Purification and characterization of 1,25(OH)2D3 receptor from human placenta. J Obstet Gynaecol (Tokyo 1995). 1995;21(6):631–9.

    Article  CAS  Google Scholar 

  19. Agic A, Xu H, Altgassen C, Noack F, Wolfler MM, Diedrich K, et al. Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod Sci. 2007;14(5):486–97. doi:10.1177/1933719107304565.

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Fernandez R, Alonso M, Segura C, Munoz I, Garcia-Caballero T, Diguez C. Vitamin D receptor gene expression in human pituitary gland. Life Sci. 1997;60(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  21. Barrera D, Avila E, Hernandez G, Mendez I, Gonzalez L, Halhali A, et al. Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts. Reprod Biol Endocrinol. 2008;6:3. doi:10.1186/1477-7827-6-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Henry HL, Norman AW. Vitamin D: metabolism and biological actions. Annu Rev Nutr. 1984;4:493–520. doi:10.1146/annurev.nu.04.070184.002425.

    Article  CAS  PubMed  Google Scholar 

  23. Vigano P, Lattuada D, Mangioni S, Ermellino L, Vignali M, Caporizzo E, et al. Cycling and early pregnant endometrium as a site of regulated expression of the vitamin D system. J Mol Endocrinol. 2006;36(3):415–24. doi:10.1677/jme.1.01946.

    Article  CAS  PubMed  Google Scholar 

  24. Fischer D, Thome M, Becker S, Cordes T, Diedrich K, Friedrich M, et al. 25-hydroxyvitamin D3 1alpha-hydroxylase splice variants in benign and malignant ovarian cell lines and tissue. Anticancer Res. 2009;29(9):3627–33.

    CAS  PubMed  Google Scholar 

  25. Stephanou A, Ross R, Handwerger S. Regulation of human placental lactogen expression by 1,25-dihydroxyvitamin D3. Endocrinology. 1994;135(6):2651–6. doi:10.1210/endo.135.6.7988455.

    Article  CAS  PubMed  Google Scholar 

  26. Tuan RS, Moore CJ, Brittingham JW, Kirwin JJ, Akins RE, Wong M. In vitro study of placental trophoblast calcium uptake using JEG-3 human choriocarcinoma cells. J Cell Sci. 1991;98(Pt 3):333–42.

    CAS  PubMed  Google Scholar 

  27. Belkacemi L, Gariepy G, Mounier C, Simoneau L, Lafond J. Expression of calbindin-D28k (CaBP28k) in trophoblasts from human term placenta. Biol Reprod. 2003;68(6):1943–50. doi:10.1095/biolreprod.102.009373.

    Article  CAS  PubMed  Google Scholar 

  28. Du H, Daftary GS, Lalwani SI, Taylor HS. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol. 2005;19(9):2222–33. doi:10.1210/me.2004-0336.

    Article  CAS  PubMed  Google Scholar 

  29. Merhi Z, Doswell A, Krebs K, Cipolla M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J Clin Endocrinol Metab. 2014;99(6):E1137–45. doi:10.1210/jc.2013-4161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barrera D, Avila E, Hernandez G, Halhali A, Biruete B, Larrea F, et al. Estradiol and progesterone synthesis in human placenta is stimulated by calcitriol. J Steroid Biochem Mol Biol. 2007;103(3–5):529–32. doi:10.1016/j.jsbmb.2006.12.097.

    Article  CAS  PubMed  Google Scholar 

  31. Sun T, Zhao Y, Mangelsdorf DJ, Simpson ER. Characterization of a region upstream of exon I.1 of the human CYP19 (aromatase) gene that mediates regulation by retinoids in human choriocarcinoma cells. Endocrinology. 1998;139(4):1684–91. doi:10.1210/endo.139.4.5959.

    Article  CAS  PubMed  Google Scholar 

  32. Krishnan AV, Swami S, Peng L, Wang J, Moreno J, Feldman D. Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology. 2010;151(1):32–42. doi:10.1210/en.2009-0855.

    Article  CAS  PubMed  Google Scholar 

  33. Malloy PJ, Peng L, Wang J, Feldman D. Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology. 2009;150(4):1580–7. doi:10.1210/en.2008-1555.

    Article  CAS  PubMed  Google Scholar 

  34. Merhi ZO, Seifer DB, Weedon J, Adeyemi O, Holman S, Anastos K, et al. Circulating vitamin D correlates with serum antimullerian hormone levels in late-reproductive-aged women: Women's interagency HIV study. Fertil Steril. 2012;98(1):228–34. doi:10.1016/j.fertnstert.2012.03.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jamil Z, Fatima SS, Ahmed K, Malik R. Anti-Mullerian hormone: above and beyond conventional ovarian reserve markers. Dis Markers. 2016;2016:5246217. doi:10.1155/2016/5246217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206. doi:10.1530/rep.1.01074.

    Article  CAS  PubMed  Google Scholar 

  37. Parry JP, Moran T, Koch CA. Ovarian reserve testing. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2016.

  38. Krishnan AV, Moreno J, Nonn L, Malloy P, Swami S, Peng L, et al. Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer. J Steroid Biochem Mol Biol. 2007;103(3–5):694–702. doi:10.1016/j.jsbmb.2006.12.051.

    Article  CAS  PubMed  Google Scholar 

  39. Dennis NA, Houghton LA, Jones GT, van Rij AM, Morgan K, McLennan IS. The level of serum anti-Mullerian hormone correlates with vitamin D status in men and women but not in boys. J Clin Endocrinol Metab. 2012;97(7):2450–5. doi:10.1210/jc.2012-1213.

    Article  CAS  PubMed  Google Scholar 

  40. Jukic AM, Steiner AZ, Baird DD. Association between serum 25-hydroxyvitamin D and ovarian reserve in premenopausal women. Menopause. 2015;22(3):312–6. doi:10.1097/GME.0000000000000312.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kwiecinksi GG, Petrie GI, DeLuca HF. 1,25-dihydroxyvitamin D3 restores fertility of vitamin D-deficient female rats. Am J Phys. 1989;256(4 Pt 1):E483–7.

    CAS  Google Scholar 

  42. Halloran BP, DeLuca HF. Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J Nutr. 1980;110(8):1573–80.

    CAS  PubMed  Google Scholar 

  43. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet. 1997;16(4):391–6. doi:10.1038/ng0897-391.

    Article  CAS  PubMed  Google Scholar 

  44. Sun W, Xie H, Ji J, Zhou X, Goltzman D, Miao D. Defective female reproductive function in 1,25(OH)2D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus. Am J Physiol Endocrinol Metab. 2010;299(6):E928–35. doi:10.1152/ajpendo.00378.2010.

    Article  CAS  PubMed  Google Scholar 

  45. Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, et al. Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci U S A. 2001;98(13):7498–503. doi:10.1073/pnas.131029498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson LE, DeLuca HF. Vitamin D receptor null mutant mice fed high levels of calcium are fertile. J Nutr. 2001;131(6):1787–91.

    CAS  PubMed  Google Scholar 

  47. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–76. doi:10.1210/er.2008-0004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89(6):2745–9. doi:10.1210/jc.2003-032046.

    Article  CAS  PubMed  Google Scholar 

  49. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–51. doi:10.1093/humrep/dep399.

    Article  PubMed  Google Scholar 

  50. Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and Pcos Society Disease State Clinical Review: Guide to the Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome--Part 1. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2015;21(11):1291–300. doi:10.4158/EP15748.DSC.

  51. Dunaif A, Finegood DT. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81(3):942–7. doi:10.1210/jcem.81.3.8772555.

    CAS  PubMed  Google Scholar 

  52. Talbott EO, Zborowskii JV, Boudraux MY. Do women with polycystic ovary syndrome have an increased risk of cardiovascular disease? Review of the evidence Minerva Ginecol. 2004;56(1):27–39.

    CAS  PubMed  Google Scholar 

  53. Thomson RL, Spedding S, Buckley JD. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol. 2012;77(3):343–50. doi:10.1111/j.1365-2265.2012.04434.x.

    Article  CAS  Google Scholar 

  54. He C, Lin Z, Robb SW, Ezeamama AE. Serum vitamin D levels and polycystic ovary syndrome: a systematic review and meta-analysis. Nutrients. 2015;7(6):4555–77. doi:10.3390/nu7064555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem Cell Biol. 1996;105(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  56. Wojtusik J, Johnson PA. Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol Reprod. 2012;86(3):91. doi:10.1095/biolreprod.111.094110.

    Article  PubMed  CAS  Google Scholar 

  57. Chang HM, Klausen C, Leung PC. Antimullerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil Steril. 2013;100(2):585–92. e1 doi:10.1016/j.fertnstert.2013.04.019.

    Article  CAS  PubMed  Google Scholar 

  58. Lee CT, Wang JY, Chou KY, Hsu MI. 1,25-dihydroxyvitamin D3 increases testosterone-induced 17beta-estradiol secretion and reverses testosterone-reduced connexin 43 in rat granulosa cells. Reprod Biol Endocrinol: RB&E. 2014;12:90. doi:10.1186/1477-7827-12-90.

    Article  CAS  Google Scholar 

  59. Van Belle TL, Gysemans C, Mathieu C. Vitamin D and diabetes: the odd couple. Trends Endocrinol Metab: TEM. 2013;24(11):561–8. doi:10.1016/j.tem.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  60. Sung CC, Liao MT, Lu KC, Wu CC. Role of vitamin D in insulin resistance. J Biomed Biotechnol. 2012;2012:634195. doi:10.1155/2012/634195.

    PubMed  PubMed Central  Google Scholar 

  61. Shahrokhi SZ, Ghaffari F, Kazerouni F. Role of vitamin D in female reproduction. Clinica chimica acta; Int J Clin Chem. 2016;455:33–8. doi:10.1016/j.cca.2015.12.040.

    Article  CAS  Google Scholar 

  62. Colonese F, Lagana AS, Colonese E, Sofo V, Salmeri FM, Granese R, et al. The pleiotropic effects of vitamin D in gynaecological and obstetric diseases: an overview on a hot topic. Biomed Res Int. 2015;2015:986281. doi:10.1155/2015/986281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Maestro B, Campion J, Davila N, Calle C. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr J. 2000;47(4):383–91.

    Article  CAS  PubMed  Google Scholar 

  64. Leal MA, Aller P, Mas A, Calle C. The effect of 1,25-dihydroxyvitamin D3 on insulin binding, insulin receptor mRNA levels, and isotype RNA pattern in U-937 human promonocytic cells. Exp Cell Res. 1995;217(2):189–94. doi:10.1006/excr.1995.1078.

    Article  CAS  PubMed  Google Scholar 

  65. Maestro B, Molero S, Bajo S, Davila N, Calle C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct. 2002;20(3):227–32. doi:10.1002/cbf.951.

    Article  CAS  PubMed  Google Scholar 

  66. Maestro B, Davila N, Carranza MC, Calle C. Identification of a vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol. 2003;84(2–3):223–30.

    Article  CAS  PubMed  Google Scholar 

  67. Dunlop TW, Vaisanen S, Frank C, Molnar F, Sinkkonen L, Carlberg C. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvitamin D3 and its nuclear receptor. J Mol Biol. 2005;349(2):248–60. doi:10.1016/j.jmb.2005.03.060.

    Article  CAS  PubMed  Google Scholar 

  68. Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc. 2004;63(2):275–8. doi:10.1079/PNS2004339.

    Article  CAS  PubMed  Google Scholar 

  69. Draznin B, Sussman K, Kao M, Lewis D, Sherman N. The existence of an optimal range of cytosolic free calcium for insulin-stimulated glucose transport in rat adipocytes. J Biol Chem. 1987;262(30):14385–8.

    CAS  PubMed  Google Scholar 

  70. Draznin B, Lewis D, Houlder N, Sherman N, Adamo M, Garvey WT, et al. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology. 1989;125(5):2341–9. doi:10.1210/endo-125-5-2341.

    Article  CAS  PubMed  Google Scholar 

  71. Reusch JE, Begum N, Sussman KE, Draznin B. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology. 1991;129(6):3269–73. doi:10.1210/endo-129-6-3269.

    Article  CAS  PubMed  Google Scholar 

  72. Calle C, Maestro B, Garcia-Arencibia M. Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Mol Biol. 2008;9:65. doi:10.1186/1471-2199-9-65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wehr E, Trummer O, Giuliani A, Gruber HJ, Pieber TR, Obermayer-Pietsch B. Vitamin D-associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic ovary syndrome. Eur J Endocrinol / European Federation of Endocrine Societies. 2011;164(5):741–9. doi:10.1530/EJE-11-0134.

    Article  CAS  Google Scholar 

  74. Zadeh-Vakili A, Ramezani Tehrani F, Daneshpour MS, Zarkesh M, Saadat N, Azizi F. Genetic polymorphism of vitamin D receptor gene affects the phenotype of PCOS. Gene. 2013;515(1):193–6. doi:10.1016/j.gene.2012.11.049.

    Article  CAS  PubMed  Google Scholar 

  75. Jedrzejuk D, Laczmanski L, Milewicz A, Kuliczkowska-Plaksej J, Lenarcik-Kabza A, Hirnle L, et al. Classic PCOS phenotype is not associated with deficiency of endogenous vitamin D and VDR gene polymorphisms rs731236 (TaqI), rs7975232 (ApaI), rs1544410 (BsmI), rs10735810 (FokI): a case-control study of lower Silesian women. Gynecol Endocrinol. 2015;31(12):976–9. doi:10.3109/09513590.2015.1062865.

    Article  CAS  PubMed  Google Scholar 

  76. Mahmoudi T, Majidzadeh AK, Farahani H, Mirakhorli M, Dabiri R, Nobakht H, et al. Association of vitamin D receptor gene variants with polycystic ovary syndrome: a case control study. Int J Reprod Biomed (Yazd). 2015;13(12):793–800.

    Google Scholar 

  77. Lin MW, Tsai SJ, Chou PY, Huang MF, Sun HS, Wu MH. Vitamin D receptor 1a promotor −1521 G/C and −1012 a/G polymorphisms in polycystic ovary syndrome. Taiwan J Obstet Gynecol. 2012;51(4):565–71. doi:10.1016/j.tjog.2012.09.011.

    Article  PubMed  Google Scholar 

  78. Li HW, Brereton RE, Anderson RA, Wallace AM, Ho CK. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism. 2011;60(10):1475–81. doi:10.1016/j.metabol.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  79. Mishra S, Das AK, Das S. Hypovitaminosis D and associated cardiometabolic risk in women with PCOS. J Clin Diagn Res. 2016;10(5):BC01–4. doi:10.7860/JCDR/2016/19407.7771.

    CAS  Google Scholar 

  80. Jia XZ, Wang YM, Zhang N, Guo LN, Zhen XL, Li H, et al. Effect of vitamin D on clinical and biochemical parameters in polycystic ovary syndrome women: a meta-analysis. J Obstet Gynaecol Res. 2015;41(11):1791–802. doi:10.1111/jog.12793.

    Article  CAS  PubMed  Google Scholar 

  81. Tsakova AD, Gateva AT, Kamenov ZA. 25(OH) vitamin D levels in premenopausal women with polycystic ovary syndrome and/or obesity. Int J Vitam Nutr Res. 2012;82(6):399–404. doi:10.1024/0300-9831/a000137.

    Article  CAS  PubMed  Google Scholar 

  82. Velija-Asimi Z. Evaluation of the association of vitamin D deficiency with gonadotropins and sex hormone in obese and non-obese women with polycystic ovary syndrome. Med Glas (Zenica). 2014;11(1):170–6.

    Google Scholar 

  83. Muscogiuri G, Policola C, Prioletta A, Sorice G, Mezza T, Lassandro A, et al. Low levels of 25(OH)D and insulin-resistance: 2 unrelated features or a cause-effect in PCOS? Clin Nutr. 2012;31(4):476–80. doi:10.1016/j.clnu.2011.12.010.

    Article  CAS  PubMed  Google Scholar 

  84. Joham AE, Teede HJ, Cassar S, Stepto NK, Strauss BJ, Harrison CL, et al. Vitamin D in polycystic ovary syndrome: relationship to obesity and insulin resistance. Mol Nutr Food Res. 2016;60(1):110–8. doi:10.1002/mnfr.201500259.

    Article  CAS  PubMed  Google Scholar 

  85. Mahmoudi T, Gourabi H, Ashrafi M, Yazdi RS, Ezabadi Z. Calciotropic hormones, insulin resistance, and the polycystic ovary syndrome. Fertil Steril. 2010;93(4):1208–14. doi:10.1016/j.fertnstert.2008.11.031.

    Article  CAS  PubMed  Google Scholar 

  86. Hahn S, Haselhorst U, Tan S, Quadbeck B, Schmidt M, Roesler S et al. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2006;114(10):577–83. doi:10.1055/s-2006-948308.

  87. Yildizhan R, Kurdoglu M, Adali E, Kolusari A, Yildizhan B, Sahin HG, et al. Serum 25-hydroxyvitamin D concentrations in obese and non-obese women with polycystic ovary syndrome. Arch Gynecol Obstet. 2009;280(4):559–63. doi:10.1007/s00404-009-0958-7.

    Article  PubMed  Google Scholar 

  88. Wehr E, Pilz S, Schweighofer N, Giuliani A, Kopera D, Pieber TR, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol / European Federation of Endocrine Societies. 2009;161(4):575–82. doi:10.1530/EJE-09-0432.

    Article  CAS  Google Scholar 

  89. Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63. doi:10.1093/humupd/dmq001.

    Article  CAS  PubMed  Google Scholar 

  90. Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152(5):307–14. doi:10.7326/0003-4819-152-5-201003020-00009.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Boulman N, Levy Y, Leiba R, Shachar S, Linn R, Zinder O, et al. Increased C-reactive protein levels in the polycystic ovary syndrome: a marker of cardiovascular disease. J Clin Endocrinol Metab. 2004;89(5):2160–5. doi:10.1210/jc.2003-031096.

    Article  CAS  PubMed  Google Scholar 

  92. Sahin S, Eroglu M, Selcuk S, Turkgeldi L, Kozali S, Davutoglu S, et al. Intrinsic factors rather than vitamin D deficiency are related to insulin resistance in lean women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2014;18(19):2851–6.

    CAS  PubMed  Google Scholar 

  93. Ganie MA, Marwaha RK, Nisar S, Farooqi KJ, Jan RA, Wani SA, et al. Impact of hypovitaminosis D on clinical, hormonal and insulin sensitivity parameters in normal body mass index polycystic ovary syndrome women. J Obstet Gynaecol. 2016;36(4):508–12. doi:10.3109/01443615.2015.1103715.

    Article  CAS  PubMed  Google Scholar 

  94. Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatsas G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol. 2005;62(1):37–43. doi:10.1111/j.1365-2265.2004.02170.x.

    Article  CAS  Google Scholar 

  95. Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D, Pawelczyk L, et al. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol. 2007;127(6):581–9. doi:10.1007/s00418-006-0265-3.

    Article  CAS  PubMed  Google Scholar 

  96. Irani M, Minkoff H, Seifer DB, Merhi Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J Clin Endocrinol Metab. 2014;99(5):E886–90. doi:10.1210/jc.2013-4374.

    Article  CAS  PubMed  Google Scholar 

  97. Selimoglu H, Duran C, Kiyici S, Ersoy C, Guclu M, Ozkaya G, et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Investig. 2010;33(4):234–8. doi:10.3275/6560.

    Article  CAS  Google Scholar 

  98. Wehr E, Pieber TR, Obermayer-Pietsch B. Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: a pilot study. J Endocrinol Investig. 2011;34(10):757–63. doi:10.3275/7748.

    CAS  Google Scholar 

  99. Ardabili HR, Gargari BP, Farzadi L. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency. Nutr Res. 2012;32(3):195–201. doi:10.1016/j.nutres.2012.02.001.

    Article  CAS  PubMed  Google Scholar 

  100. Raja-Khan N, Shah J, Stetter CM, Lott ME, Kunselman AR, Dodson WC, et al. High-dose vitamin D supplementation and measures of insulin sensitivity in polycystic ovary syndrome: a randomized, controlled pilot trial. Fertil Steril. 2014;101(6):1740–6. doi:10.1016/j.fertnstert.2014.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bonakdaran S, Mazloom Khorasani Z, Davachi B, Mazloom KJ. The effects of calcitriol on improvement of insulin resistance, ovulation and comparison with metformin therapy in PCOS patients: a randomized placebo- controlled clinical trial. Iran J Reprod Med. 2012;10(5):465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dravecka I, Figurova J, Javorsky M, Petrikova J, Valkova M, Lazurova I. The effect of alfacalcidiol and metformin on phenotype manifestations in women with polycystic ovary syndrome - a preliminary study. Physiol Res. 2016;23;65(5):815–22.

  103. Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. Int J Reprod Med. 2014;2014:179515. doi:10.1155/2014/179515.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Miyashita M, Koga K, Izumi G, Sue F, Makabe T, Taguchi A, et al. Effects of 1,25-Dihydroxy vitamin D3 on endometriosis. J Clin Endocrinol Metab. 2016;101(6):2371–9. doi:10.1210/jc.2016-1515.

    Article  CAS  PubMed  Google Scholar 

  105. Mariani M, Vigano P, Gentilini D, Camisa B, Caporizzo E, Di Lucia P, et al. The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation. Hum Reprod. 2012;27(7):2010–9. doi:10.1093/humrep/des150.

    Article  CAS  PubMed  Google Scholar 

  106. Abbas MA, Taha MO, Disi AM, Shomaf M. Regression of endometrial implants treated with vitamin D3 in a rat model of endometriosis. Eur J Pharmacol. 2013;715(1–3):72–5. doi:10.1016/j.ejphar.2013.06.016.

    Article  CAS  PubMed  Google Scholar 

  107. Yildirim B, Guler T, Akbulut M, Oztekin O, Sariiz G. 1-alpha,25-dihydroxyvitamin D3 regresses endometriotic implants in rats by inhibiting neovascularization and altering regulation of matrix metalloproteinase. Postgrad Med. 2014;126(1):104–10. doi:10.3810/pgm.2014.01.2730.

    Article  PubMed  Google Scholar 

  108. Vilarino FL, Bianco B, Lerner TG, Teles JS, Mafra FA, Christofolini DM, et al. Analysis of vitamin D receptor gene polymorphisms in women with and without endometriosis. Hum Immunol. 2011;72(4):359–63. doi:10.1016/j.humimm.2011.01.006.

    Article  CAS  PubMed  Google Scholar 

  109. Hartwell D, Rodbro P, Jensen SB, Thomsen K, Christiansen C. Vitamin D metabolites--relation to age, menopause and endometriosis. Scand J Clin Lab Invest. 1990;50(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  110. Somigliana E, Panina-Bordignon P, Murone S, Di Lucia P, Vercellini P, Vigano P. Vitamin D reserve is higher in women with endometriosis. Hum Reprod. 2007;22(8):2273–8. doi:10.1093/humrep/dem142.

    Article  PubMed  Google Scholar 

  111. Ferrero S, Gillott DJ, Anserini P, Remorgida V, Price KM, Ragni N, et al. Vitamin D binding protein in endometriosis. J Soc Gynecol Investig. 2005;12(4):272–7. doi:10.1016/j.jsgi.2005.01.027.

    Article  CAS  PubMed  Google Scholar 

  112. Faserl K, Golderer G, Kremser L, Lindner H, Sarg B, Wildt L, et al. Polymorphism in vitamin D-binding protein as a genetic risk factor in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2011;96(1):E233–41. doi:10.1210/jc.2010-1532.

    Article  CAS  PubMed  Google Scholar 

  113. Hwang JH, Wang T, Lee KS, Joo JK, Lee HG. Vitamin D binding protein plays an important role in the progression of endometriosis. Int J Mol Med. 2013;32(6):1394–400. doi:10.3892/ijmm.2013.1506.

    CAS  PubMed  Google Scholar 

  114. Borkowski J, Gmyrek GB, Madej JP, Nowacki W, Goluda M, Gabrys M et al. Serum and peritoneal evaluation of vitamin D-binding protein in women with endometriosis. Postepy Hig Med Dosw (Online). 2008;62:103–9.

  115. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357(3):266–281. doi:10.1056/NEJMra070553.

  116. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. doi:10.1210/jc.2011-0385.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Muscogiuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Giovanna Muscogiuri and Barbara Altieri contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muscogiuri, G., Altieri, B., de Angelis, C. et al. Shedding new light on female fertility: The role of vitamin D. Rev Endocr Metab Disord 18, 273–283 (2017). https://doi.org/10.1007/s11154-017-9407-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-017-9407-2

Keywords

Navigation