Skip to main content

Advertisement

Log in

Beyond acne: Current aspects of sebaceous gland biology and function

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The sebaceous gland is most commonly found in association with a hair follicle. Its traditional function is the holocrine production of sebum, a complex mixture of lipids, cell debris, and other rather poorly characterized substances. Due to the gland’s central role in acne pathogenesis, early research had focused on its lipogenic activity. Less studied aspects of the sebaceous gland, such as stem cell biology, the regulation of cellular differentiation by transcription factors, the significance of specific lipid fractions, the endocrine and specially the neuroendocrine role of the sebaceous gland, and its contribution to the innate immunity, the detoxification of the skin, and skin aging have only recently attracted the attention of researchers from different disciplines. Here, we summarize recent multidisciplinary progress in sebaceous gland research and discuss how sebaceous gland research may stimulate the development of novel therapeutic strategies targeting specific molecular pathways of the pathogenesis of skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zouboulis CC, Tsatsou F. Anatomy of the sebaceous gland. In: Zouboulis CC, Katsambas AD, Kligman AM, editors. Pathogenesis and treatment of acne and rosacea. Berlin: Springer; 2014. p. 27–31.

    Google Scholar 

  2. Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol. 2009;19:R132–42.

    Article  CAS  PubMed  Google Scholar 

  3. Zouboulis CC, Makrantonaki E. The role of the sebaceous gland. In: Zouboulis CC, Katsambas AD, Kligman AM, editors. Pathogenesis and treatment of acne and rosacea. Berlin: Springer; 2014. p. 77–90.

    Google Scholar 

  4. Schneider MR, Paus R. Sebocytes, multifaceted epithelial cells: lipid production and holocrine secretion. Int J Biochem Cell Biol. 2010;42:181–5.

    Article  CAS  PubMed  Google Scholar 

  5. Zouboulis CC, Baron JM, Bohm M, Kippenberger S, Kurzen H, Reichrath J, et al. Frontiers in sebaceous gland biology and pathology. Exp Dermatol. 2008;17:542–51.

    Article  CAS  PubMed  Google Scholar 

  6. Smith KR, Thiboutot DM. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res. 2008;49:271–81.

    Article  CAS  PubMed  Google Scholar 

  7. Zouboulis CC. Sebaceous gland in human skin—the fantastic future of a skin appendage. J Invest Dermatol. 2003;120:xiv–xv.

    Article  CAS  PubMed  Google Scholar 

  8. Thody AJ, Shuster S. Control and function of sebaceous glands. Physiol Rev. 1989;69:383–416.

    CAS  PubMed  Google Scholar 

  9. Camera E, Ludovici M, Galante M, Sinagra JL, Picardo M. Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res. 2010;51:3377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Picardo M, Ottaviani M, Camera E, Mastrofrancesco A. Sebaceous gland lipids. Dermatoendocrinol. 2009;1:68–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pappas A. Epidermal surface lipids. Dermatoendocrinol. 2009;1:72–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nikkari T. Comparative chemistry of sebum. J Invest Dermatol. 1974;62:257–67.

    Article  CAS  PubMed  Google Scholar 

  13. Ramasastry P, Downing DT, Pochi PE, Strauss JS. Chemical composition of human skin surface lipids from birth to puberty. J Invest Dermatol. 1970;54:139–44.

    Article  CAS  PubMed  Google Scholar 

  14. Zouboulis CC, Schagen S, Alestas T. The sebocyte culture—a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Arch Dermatol Res. 2008;300:397–413.

    Article  PubMed  Google Scholar 

  15. Zouboulis CC, Seltmann H, Neitzel H, Orfanos CE. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol. 1999;113:1011–20.

    Article  CAS  PubMed  Google Scholar 

  16. Xia LQ, Zouboulis CC, Detmar M, Mayer-da-Silva A, Stadler R, Orfanos CE. Isolation of human sebaceous glands and cultivation of sebaceous gland-derived cells as an in vitro model. J Invest Dermatol. 1989;93:315–21.

    Article  CAS  PubMed  Google Scholar 

  17. Latham JA, Redfern CP, Thody AJ, De Kretser TA. Immunohistochemical markers of human sebaceous gland differentiation. J Histochem Cytochem. 1989;37:729–34.

    Article  CAS  PubMed  Google Scholar 

  18. Zouboulis CC, Fimmel S, Ortmann J, Turnbull JR, Boschnakow A. Sebaceous glands. In: Hoath SB, Maibach HI, editors. Neonatal skin—structure and function. 2nd ed. New York: Marcel Dekker; 2003. p. 59–88.

    Google Scholar 

  19. Zouboulis CC, Xia L, Akamatsu H, Seltmann H, Fritsch M, Hornemann S, et al. The human sebocyte culture model provides new insights into development and management of seborrhoea and acne. Dermatology. 1998;196:21–31.

    Article  CAS  PubMed  Google Scholar 

  20. Zouboulis CC, Chen W. The sebaceous gland and its role as an endocrine organ. World Clin Dermatol. 2013;1(1):37–51.

    Google Scholar 

  21. Zouboulis CC. Sebaceous gland in human skin—the fantastic future of a skin appendage. J Invest Dermatol. 2003;120:xiv–xv.

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Obermayer-Pietsch B, Hong JB, Melnik B, Yamasaki O, Dessinioti C, et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol. 2011;25:637–46.

    Article  CAS  PubMed  Google Scholar 

  23. Zouboulis CC, Nikolakis G, Dessinioti C. Molecular aspects of sebaceous differentiation. In: Zouboulis CC, Katsambas AD, Kligman AM, editors. Pathogenesis and treatment of acne and rosacea. Berlin: Springer; 2014. p. 19–26.

    Google Scholar 

  24. Zouboulis CC. Sebaceous gland receptors. Dermatoendocrinol. 2009;1:77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen W, Zouboulis CC. Hormones and the pilosebaceous unit. Dermatoendocrinol. 2009;1:81–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wirth H, Gloor M, Stoika D. Sebaceous glands in uninvolved skin of patients suffering from atopic dermatitis. Arch Dermatol Res. 1981;270:167–9.

    Article  CAS  PubMed  Google Scholar 

  27. Shi VY, Leo M, Hassoun L, Chahal DS, Maibach HI, Sivamani RK. Role of sebaceous glands in inflammatory dermatoses. J Am Acad Dermatol. 2015;73:856–63.

    Article  CAS  PubMed  Google Scholar 

  28. Watt FM. The stem cell compartment in human interfollicular epidermis. J Dermatol Sci. 2002;28:173–80.

    Article  CAS  PubMed  Google Scholar 

  29. Niemann C, Owens DM, Hulsken J, Birchmeier W, Watt FM. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development. 2002;129:95–109.

    CAS  PubMed  Google Scholar 

  30. Merrill BJ, Gat U, DasGupta R, Fuchs E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 2001;15:1688–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han G, Li AG, Liang YY, Owens P, He W, Lu S, et al. Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev Cell. 2006;11:301–12.

    Article  CAS  PubMed  Google Scholar 

  32. Niemann C, Unden AB, Lyle S, Zouboulis CC, Toftgard R, Watt FM. Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A. 2003;100 suppl 1:11873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen M, Grachtchouk M, Sheng H, Grachtchouk V, Wang A, Wei L, et al. Hedgehog signaling regulates sebaceous gland development. Am J Pathol. 2003;163:2173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development. 2003;130:5241–55.

    Article  CAS  PubMed  Google Scholar 

  35. Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann K. Human skin stem cells and the ageing process. Exp Gerontol. 2008;43:986–97.

    Article  CAS  PubMed  Google Scholar 

  36. Fuchs E, Horsley V. More than one way to skin. Genes Dev. 2008;22:976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watt FM, Lo CC, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev. 2006;16:518–24.

    Article  CAS  PubMed  Google Scholar 

  38. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–4.

    Article  CAS  PubMed  Google Scholar 

  39. Selleri S, Seltmann H, Gariboldi S, Shirai YF, Balsari A, Zouboulis CC, et al. Doxorubicin-induced alopecia is associated with sebaceous gland degeneration. J Invest Dermatol. 2006;126:711–20.

    Article  CAS  PubMed  Google Scholar 

  40. Lo Celso C, Berta MA, Braun KM, Frye M, Lyle S, Zouboulis CC, et al. Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin. Stem Cells. 2008;26:1241–52.

    Article  CAS  PubMed  Google Scholar 

  41. Ghazizadeh S, Taichman LB. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 2001;20:1215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell. 2006;126:597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sellheyer K, Krahl D. Blimp-1: a marker of terminal differentiation but not of sebocytic progenitor cells. J Cutan Pathol. 2010;37:362–70.

    Article  PubMed  Google Scholar 

  44. Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3:33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tosti A. A comparison of the histodynamics of sebaceous glands and epidermis in man: a microanatomic and morphometric study. J Invest Dermatol. 1974;62:147–52.

    Article  CAS  PubMed  Google Scholar 

  46. Zouboulis CC, Krieter A, Gollnick H, Mischke D, Orfanos CE. Progressive differentiation of human sebocytes in vitro is characterized by increased cell size and altered antigenic expression and is regulated by culture duration and retinoids. Exp Dermatol. 1994;3:151–60.

    Article  CAS  PubMed  Google Scholar 

  47. Jenkinson DM, Elder HY, Montgomery I, Moss VA. Comparative studies of the ultrastructure of the sebaceous gland. Tissue Cell. 1985;17:683–98.

    Article  CAS  PubMed  Google Scholar 

  48. Thiboutot D, Jabara S, McAllister JM, Sivarajah A, Gilliland K, Cong Z, et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120:905–14.

    Article  CAS  PubMed  Google Scholar 

  49. Hong I, Lee MH, Na TY, Zouboulis CC, Lee MO. LXRalpha enhances lipid synthesis in SZ95 sebocytes. J Invest Dermatol. 2008;128:1266–72.

    Article  CAS  PubMed  Google Scholar 

  50. Smith TM, Cong Z, Gilliland KL, Clawson GA, Thiboutot DM. Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response element-binding protein-1. J Invest Dermatol. 2006;126:1226–32.

    Article  CAS  PubMed  Google Scholar 

  51. Ge L, Gordon JS, Hsuan C, Stenn K, Prouty SM. Identification of the delta-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol. 2003;120:707–14.

    Article  CAS  PubMed  Google Scholar 

  52. Zouboulis CC, Jourdan E, Picardo M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol Venereol. 2014;28:527–32.

    Article  CAS  PubMed  Google Scholar 

  53. Pappas A, Anthonavage M, Gordon JS. Metabolic fate and selective utilization of major fatty acids in human sebaceous gland. J Invest Dermatol. 2002;118:164–71.

    Article  CAS  PubMed  Google Scholar 

  54. Robosky LC, Wade K, Woolson D, Baker JD, Manning ML, Gage DA, et al. Quantitative evaluation of sebum lipid components with nuclear magnetic resonance. J Lipid Res. 2008;49:686–92.

    Article  CAS  PubMed  Google Scholar 

  55. Knutson DD. Ultrastructural observations in acne vulgaris: the normal sebaceous follicle and acne lesions. J Invest Dermatol. 1974;62:288–307.

    Article  CAS  PubMed  Google Scholar 

  56. Kurokawa I, Mayer-da-Silva A, Gollnick H, Orfanos CE. Monoclonal antibody labeling for cytokeratins and filaggrin in the human pilosebaceous unit of normal, seborrhoeic and acne skin. J Invest Dermatol. 1988;91:566–71.

    Article  CAS  PubMed  Google Scholar 

  57. Eisen AZ, Holyoke JB, Lobitz Jr WC. Responses of the superficial portion of the human pilosebaceous apparatus to controlled injury. J Invest Dermatol. 1955;25:145–56.

    Article  CAS  PubMed  Google Scholar 

  58. Gu LH, Coulombe PA. Hedgehog signaling, keratin 6 induction, and sebaceous gland morphogenesis: implications for pachyonychia congenita and related conditions. Am J Pathol. 2008;173:752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.

    Article  CAS  PubMed  Google Scholar 

  60. Alestas T, Ganceviciene R, Fimmel S, Muller-Decker K, Zouboulis CC. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84:75–87.

    Article  CAS  PubMed  Google Scholar 

  61. Chen W, Yang CC, Sheu HM, Seltmann H, Zouboulis CC. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol. 2003;121:441–7.

    Article  CAS  PubMed  Google Scholar 

  62. Dozsa A, Dezso B, Toth BI, Bacsi A, Poliska S, Camera E, et al. PPARγ nuclear receptor coupled arachidonic acid signaling is involved in differentiation and lipid production of human sebocytes. J Invest Dermatol. 2014;134:910–20.

    Article  CAS  PubMed  Google Scholar 

  63. Wróbel A, Seltmann H, Fimmel S, Muller-Decker K, Tsukada M, Bogdanoff B, et al. Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol. 2003;120:175–81.

    Article  PubMed  Google Scholar 

  64. Trivedi NR, Cong Z, Nelson AM, Albert AJ, Rosamilia LL, Sivarajah S, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126:2002–9.

    Article  CAS  PubMed  Google Scholar 

  65. Zouboulis CC, Nestoris S, Adler YD, Orth M, Orfanos CE, Picardo M, et al. A new concept for acne therapy: a pilot study with zileuton, an oral 5-lipoxygenase inhibitor. Arch Dermatol. 2003;139:668–70.

    Article  PubMed  Google Scholar 

  66. Zouboulis CC, Seltmann H, Alestas T. Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis. Exp Dermatol. 2010;19:148–50.

    Article  CAS  PubMed  Google Scholar 

  67. Schuster M, Zouboulis CC, Ochsendorf F, Muller J, Thaci D, Bernd A, et al. Peroxisome proliferator-activated receptor activators protect sebocytes from apoptosis: a new treatment modality for acne? Br J Dermatol. 2011;164:182–6.

    Article  CAS  PubMed  Google Scholar 

  68. Zouboulis CC. The human skin as a hormone target and an endocrine gland. Hormones (Athens). 2004;3:9–26.

    Article  Google Scholar 

  69. Russell LE, Harrison WJ, Bahta AW, Zouboulis CC, Burrin JM, Philpott MP. Characterization of liver X receptor expression and function in human skin and the pilosebaceous unit. Exp Dermatol. 2007;16:844–52.

    Article  CAS  PubMed  Google Scholar 

  70. Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27:2320–36.

    Article  CAS  PubMed  Google Scholar 

  71. Mirdamadi Y, Thielitz A, Wiede A, Goihl A, Papakonstantinou E, Hartig R, et al. Insulin and insulin-like growth factor-1 can modulate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in SZ95 sebocytes in vitro. Mol Cell Endocrinol. 2015;415:32–44.

    Article  CAS  PubMed  Google Scholar 

  72. Melnik B, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol. 2013;22:311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pelle E, McCarthy J, Seltmann H, Huang X, Mammone T, Zouboulis CC, et al. Identification of histamine receptors and reduction of squalene levels by an antihistamine in sebocytes. J Invest Dermatol. 2008;128:1280–5.

    Article  CAS  PubMed  Google Scholar 

  74. Zouboulis CC. Sebaceous gland receptors. Dermatoendocrinol. 2009;1:77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsukada M, Schroder M, Roos TC, Chandraratna RA, Reichert U, Merk HF, et al. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. J Invest Dermatol. 2000;115:321–7.

    Article  CAS  PubMed  Google Scholar 

  76. Zouboulis CC, Korge B, Akamatsu H, Xia LQ, Schiller S, Gollnick H, et al. Effects of 13-cis-retinoic acid, all-trans-retinoic acid, and acitretin on the proliferation, lipid synthesis and keratin expression of cultured human sebocytes in vitro. J Invest Dermatol. 1991;96:792–7.

    Article  CAS  PubMed  Google Scholar 

  77. Kim MJ, Deplewski D, Ciletti N, Michel S, Reichert U, Rosenfield RL. Limited cooperation between peroxisome proliferator-activated receptors and retinoid X receptor agonists in sebocyte growth and development. Mol Genet Metab. 2001;74:362–9.

    Article  CAS  PubMed  Google Scholar 

  78. Dahlhoff M, Camera E, Picardo M, Zouboulis CC, Chan L, Chang BH, et al. PLIN2, the major perilipin regulated during sebocyte differentiation, controls sebaceous lipid accumulation in vitro and sebaceous gland size in vivo. Biochim Biophys Acta Gen Subjects. 1830;2013:4642–9.

    Google Scholar 

  79. Camera E, Dahlhoff M, Ludovici N, Zouboulis CC, Schneider M. Perilipin 3 modulates specific lipogenic pathways in SZ95 sebocytes. Exp Dermatol. 2014;23:759–61.

    Article  CAS  PubMed  Google Scholar 

  80. Dahlhoff M, Camera E, Picardo M, Zouboulis CC, Schneider MR. Angiopoietin-like 4, a protein strongly induced during sebocyte differentiation, regulates sebaceous lipogenesis but is dispensable for sebaceous gland function in vivo. J Dermatol Sci. 2014;75:148–50.

    Article  CAS  PubMed  Google Scholar 

  81. Fritsch M, Orfanos CE, Zouboulis CC. Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol. 2001;116:793–800.

    Article  CAS  PubMed  Google Scholar 

  82. Chen W, Zouboulis CC, Fritsch M, Kodelja V, Orfanos CE. Heterogeneity and quantitative differences of type 1 5alpha-reductase expression in cultured skin epithelial cells. Dermatology. 1998;196:51–2.

    Article  CAS  PubMed  Google Scholar 

  83. Fimmel S, Saborowski A, Terouanne B, Sultan C, Zouboulis CC. Inhibition of the androgen receptor by antisense oligonucleotides regulates the biological activity of androgens in SZ95 sebocytes. Horm Metab Res. 2007;39:149–56.

    Article  CAS  PubMed  Google Scholar 

  84. Akamatsu H, Zouboulis CC, Orfanos CE. Spironolactone directly inhibits proliferation of cultured human facial sebocytes and acts antagonistically to testosterone and 5alpha-dihydrotestosterone in vitro. J Invest Dermatol. 1993;100:660–2.

    Article  CAS  PubMed  Google Scholar 

  85. Rosenfield RL, Deplewski D, Kentsis A, Ciletti N. Mechanisms of androgen induction of sebocyte differentiation. Dermatology. 1998;196:43–6.

    Article  CAS  PubMed  Google Scholar 

  86. Makrantonaki E, Zouboulis CC. Testosterone metabolism to 5alpha-dihydrotestosterone and synthesis of sebaceous lipids is regulated by the peroxisome proliferator-activated receptor ligand linoleic acid in human sebocytes. Br J Dermatol. 2007;156:428–32.

    Article  CAS  PubMed  Google Scholar 

  87. Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28:778–808.

    Article  CAS  PubMed  Google Scholar 

  88. Borlu M, Karaca Z, Yildiz H, Tanriverdi F, Demirel B, Elbuken G, et al. Acromegaly is associated with decreased skin transepidermal water loss and temperature, and increased skin pH and sebum secretion partially reversible after treatment. Growth Horm IGF Res. 2012;22:82–6.

  89. Deplewski D, Rosenfield RL. Role of hormones in pilosebaceous unit development. Endocr Rev. 2000;21:363–92.

    Article  CAS  PubMed  Google Scholar 

  90. Cappel M, Mauger D, Thiboutot D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch Dermatol. 2005;141:333–8.

    Article  CAS  PubMed  Google Scholar 

  91. Makrantonaki E, Vogel K, Fimmel S, Oeff M, Seltmann H, Zouboulis CC. Interplay of IGF-I and 17beta-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol. 2008;43:939–46.

    Article  CAS  PubMed  Google Scholar 

  92. Deplewski D, Rosenfield RL. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology. 1999;140:4089–94.

    CAS  PubMed  Google Scholar 

  93. Smith TM, Gilliland K, Clawson GA, Thiboutot D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol. 2008;128:1286–93.

    Article  CAS  PubMed  Google Scholar 

  94. Melnik BC. Role of FGFR2-signaling in the pathogenesis of acne. Dermatoendocrinol. 2009;1:141–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Melnik BC, Vakilzadeh F, Aslanidis C, Schmitz G. Unilateral segmental acneiform naevus: a model disorder towards understanding fibroblast growth factor receptor 2 function in acne? Br J Dermatol. 2008;158:1397–9.

    Article  CAS  PubMed  Google Scholar 

  96. Grose R, Fantl V, Werner S, Chioni AM, Jarosz M, Rudling R, et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J. 2007;26:1268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Melnik BC, Schmitz G, Zouboulis CC. Anti-acne agents attenuate FGFR2 signal transduction in acne. J Invest Dermatol. 2009;129:1868–77.

    Article  CAS  PubMed  Google Scholar 

  98. Schneider MR, Samborski A, Bauersachs S, Zouboulis CC. Differentially regulated microRNAs during human sebaceous lipogenesis. J Dermatol Sci. 2013;70:88–93.

    Article  CAS  PubMed  Google Scholar 

  99. Tetzlaff MT, Curry JL, Yin V, Pattanaprichakul P, Manonukul J, Uiprasertkul M, et al. Distinct pathways in the pathogenesis of sebaceous carcinomas implicated by differentially expressed microRNAs. JAMA Ophthalmol. 2015;133:1109–16.

    Article  PubMed  Google Scholar 

  100. Montagna W, Parakkal PF. The structure and function of the skin. London: Academic Press; 1974.

    Google Scholar 

  101. Montagna W, Kligman AM, Carlisle KS. Atlas of normal human skin. Heidelberg: Springer; 1992.

    Book  Google Scholar 

  102. Toyoda M, Nakamura M, Makino T, Kagoura M, Morohashi M. Sebaceous glands in acne patients express high levels of neutral endopeptidase. Exp Dermatol. 2002;11:241–7.

    Article  CAS  PubMed  Google Scholar 

  103. Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol. 2009;160:345–52.

    Article  CAS  PubMed  Google Scholar 

  104. Zouboulis CC, Seltmann H, Hiroi N, Chen W, Young M, Oeff M, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci U S A. 2002;99:7148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Krause K, Schnitger A, Fimmel S, Glass E, Zouboulis CC. Corticotropin-releasing hormone skin signaling is receptor-mediated and is predominant in the sebaceous glands. Horm Metab Res. 2007;39:166–70.

    Article  CAS  PubMed  Google Scholar 

  106. Lipton JM, Catania A. Anti-inflammatory actions of the neuroimmunomodulator alpha-MSH. Immunol Today. 1997;18:140–5.

    Article  CAS  PubMed  Google Scholar 

  107. Bohm M, Schiller M, Stander S, Seltmann H, Li Z, Brzoska T, et al. Evidence for expression of melanocortin-1 receptor in human sebocytes in vitro and in situ. J Invest Dermatol. 2002;118:533–9.

    Article  CAS  PubMed  Google Scholar 

  108. Ganceviciene R, Graziene V, Bohm M, Zouboulis CC. Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris. Exp Dermatol. 2007;16:547–52.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang L, Li WH, Anthonavage M, Eisinger M. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides. 2006;27:413–20.

    Article  PubMed  CAS  Google Scholar 

  110. Maresca V, Flori E, Camera E, Bellei B, Aspite N, Ludovici M, et al. Linking αMSH with PPARγ in B16-F10 melanoma. Pigment Cell Melanoma Res. 2013;26:113–27.

    Article  CAS  PubMed  Google Scholar 

  111. Abdel-Naser MB, Seltmann H, Zouboulis CC. SZ95 sebocytes induce epidermal melanocyte dendricity and proliferation in vitro. Exp Dermatol. 2012;21:393–5.

    Article  CAS  PubMed  Google Scholar 

  112. Maresca V, Flori E, Picardo M. Skin phototype: a new perspective. Pigment Cell Melanoma Res. 2015;28:378–89.

    Article  CAS  PubMed  Google Scholar 

  113. Stander S, Schmelz M, Metze D, Luger T, Rukwied R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatol Sci. 2005;38:177–88.

    Article  PubMed  CAS  Google Scholar 

  114. Dobrosi N, Toth BI, Nagy G, Dozsa A, Geczy T, Nagy L, et al. Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling. FASEB J. 2008;22:3685–95.

    Article  CAS  PubMed  Google Scholar 

  115. Toyoda M, Nakamura M, Morohashi M. Neuropeptides and sebaceous glands. Eur J Dermatol. 2001;12:422–7.

    Google Scholar 

  116. Ansorge S, Reinhold D, Lendeckel U. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-beta1 production of human immune cells. Z Naturforsch C. 2003;58:580–9.

    Article  CAS  PubMed  Google Scholar 

  117. Thielitz A, Reinhold D, Vetter R, Bank U, Helmuth M, Hartig R, et al. Inhibitors of dipeptidyl peptidase IV and aminopeptidase N target major pathogenetic steps in acne initiation. J Invest Dermatol. 2007;127:1042–51.

    Article  CAS  PubMed  Google Scholar 

  118. Braff MH, Bardan A, Nizet V, Gallo RL. Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermratol. 2005;125:9–13.

    Article  CAS  Google Scholar 

  119. Lee DY, Yamasaki K, Rudsil J, Zouboulis CC, Park GT, Yang JM, et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill Propionibacterium acnes. J Invest Dermatol. 2008;128:1863–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dahlhoff M, Zouboulis CC, Schneider MR. Expression of dermcidin in sebocytes supports a role for sebum in the constitutive innate defense of human skin. J Dermatol Sci. 2016;81:124–6.

    Article  CAS  PubMed  Google Scholar 

  121. Chronnell CM, Ghali LR, Ali RS, Quinn AG, Holland DB, Bull JJ, et al. Human beta defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J Invest Dermatol. 2001;117:1120–5.

    Article  CAS  PubMed  Google Scholar 

  122. Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124:931–8.

    Article  CAS  PubMed  Google Scholar 

  123. Nakatsuji T, Kao MC, Zhang L, Zouboulis CC, Gallo RL, Huang CM. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Invest Dermatol. 2010;130:985–94.

    Article  CAS  PubMed  Google Scholar 

  124. Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, et al. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria. Infect Immun. 2005;73:4512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee DY, Huang CM, Nakatsuji T, Thiboutot D, Kang SA, Monestier M, et al. Histone H4 is a major component of the antimicrobial action of human sebocytes. J Invest Dermatol. 2009;129:2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nakatsuji T, Kao MC, Fang J-Y, Zouboulis CC, Zhang L, Gallo RL, et al. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol. 2009;129:2480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49:4–11.

    Article  CAS  PubMed  Google Scholar 

  128. Wille JJ, Kydonieus A. Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol Appl Skin Physiol. 2003;16:176–87.

    Article  CAS  PubMed  Google Scholar 

  129. Zouboulis CC, Angres S, Seltmann H. Regulation of stearoyl-CoA desaturase and fatty acid desaturase 2 expression by linoleic acid and arachidonic acid in human sebocytes leads to enhancement of proinflammatory activity but does not affect lipogenesis. Br J Dermatol. 2011;165:269–76.

    Article  CAS  PubMed  Google Scholar 

  130. Kovács D, Lovászi M, Póliska S, Oláh A, Bíró T, Veres I, et al. Sebocytes differentially express and secrete adipokines. Exp Dermatol. 2016;25:194–9.

    Article  PubMed  CAS  Google Scholar 

  131. Chen HC, Smith SJ, Tow B, Elias PM, Farese Jr RV. Leptin modulates the effects of acyl CoA:diacylglycerol acyltransferase deficiency on murine fur and sebaceous glands. J Clin Invest. 2002;109:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Töröcsik D, Kovács D, Camera E, Lovászi M, Cseri K, Nagy GG, et al. Leptin promotes a pro-inflammtory lipid profile and induces inflammatory pathways in human SZ95 sebocytes. Br J Dermatol. 2014;171:1326–35.

    Article  PubMed  CAS  Google Scholar 

  133. Lee SH, Jeong SK, Ahn SK. An update of the defensive barrier function of skin. Yonsei Med J. 2006;47:293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58:85–90.

    Article  CAS  PubMed  Google Scholar 

  135. De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. 2010;2010:321494.

    PubMed  PubMed Central  Google Scholar 

  136. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J Eur Acad Dermatol Venereol. 2003;17:663–9.

    Article  CAS  PubMed  Google Scholar 

  137. Ekanayake-Mudiyanselage S, Thiele J. Die Talgdrüse als transporter für vitamin E. Hautarzt. 2006;57:291–6.

    Article  CAS  PubMed  Google Scholar 

  138. Lefebvre MA, Pham DM, Boussouira B, Qiu H, Ye C, Long X, et al. Consequences of urban pollution upon skin status. A controlled study in Shanghai area Int J Cosmet Sci. 2015;38(3):217–23.

    Article  PubMed  Google Scholar 

  139. Pham DM, Boussouira B, Moyal D, Nguyen QL. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies. Int J Cosmet Sci. 2015;37:357–65.

    Article  CAS  PubMed  Google Scholar 

  140. Panteleyev AA, Bickers DR. Dioxin-induced chloracne—reconstructing the cellular and molecular mechanisms of a classic environmental disease. Exp Dermatol. 2006;15:705–30.

    Article  CAS  PubMed  Google Scholar 

  141. Kamp S, Fiehn AM, Stenderup K, Rosada C, Pakkenberg B, Kemp K, et al. Hidradenitis suppurativa: a disease of the absent sebaceous gland? Sebaceous gland number and volume are significantly reduced in uninvolved hair follicles from patients with hidradenitis suppurativa. Br J Dermatol. 2011;164:1017–22.

    Article  CAS  PubMed  Google Scholar 

  142. Ju Q, Fimmel S, Hinz N, Stahlmann R, Xia L, Zouboulis CC. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters sebaceous gland cell differentiation in vitro. Exp Dermatol. 2011;20:320–5.

    Article  CAS  PubMed  Google Scholar 

  143. Hu T, Pan Z, Yu Q, Mo X, Song N, Yan M, et al. Benzo(a)pyrene induces interleukin (IL)-6 production and reduces lipid synthesis in human SZ95 sebocytes via the aryl hydrocarbon receptor signaling pathway. Environ Toxicol Pharmacol. 2016;43:54–60.

    Article  CAS  PubMed  Google Scholar 

  144. Esser C. Biology and function of the aryl hydrocarbon receptor: report of an international and interdisciplinary conference. Arch Toxicol. 2012;86:1323–9.

    Article  CAS  PubMed  Google Scholar 

  145. Ju Q, Yu Q, Song NJ, Tan Y, Xia LQ, Zouboulis CC. Expression of aryl hydrocarbon receptor in human epidermis, hair follicles and sebaceous glands and its significance. Chin J Dermatol. 2011;44:761–4.

    CAS  Google Scholar 

  146. Rowe JM, Welsh C, Pena RN, Wolf CR, Brown K, Whitelaw CB. Illuminating role of CYP1A1 in skin function. J Invest Dermatol. 2008;128:1866–8.

    Article  CAS  PubMed  Google Scholar 

  147. Paraskevaidis A, Drakoulis N, Roots I, Orfanos CE, Zouboulis CC. Polymorphisms in the human cytochrome P-450 1A1 gene (CYP1A1) as a factor for developing acne. Dermatololgy. 1998;196:171–5.

    Article  CAS  Google Scholar 

  148. Nikolakis G, Seltmann H, Hossini A, Makrantonaki E, Knolle J, Zouboulis CC. Ex vivo human skin and SZ95 sebocytes exhibit a homeostatic interaction in a novel co-culture contact model. Exp Dermatol. 2015;24:497–502.

    Article  CAS  PubMed  Google Scholar 

  149. Zheng Y, Eilertsen KJ, Ge L, Zhang L, Sundberg JP, Prouty SM, et al. Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. Nat Genet. 1999;23:268–70.

    Article  CAS  PubMed  Google Scholar 

  150. Dahlhoff M, Camera E, Schäfer M, Emrich D, Riethmache D, Foster E, et al. Sebaceous lipids are essential for water repulsion, protection against UVB-induced apoptosis, and ocular integrity in mice. Development. 2016;143(10):1823–31.

    Article  CAS  PubMed  Google Scholar 

  151. Stenn KS, Zheng Y, Parimoo S. Phylogeny of the hair follicle: the sebogenic hypothesis. J Invest Dermatol. 2008;128:1576–8.

    Article  CAS  PubMed  Google Scholar 

  152. Dahlhoff M, Fröhlich T, Arnold GJ, Müller U, Leonhardt H, Zouboulis CC, et al. Characterization of the sebocyte lipid droplet proteome reveals novel potential regulators of sebaceous lipogenesis. Exp Cell Res. 2015;332:146–55.

    Article  CAS  PubMed  Google Scholar 

  153. Dahlhoff M, Fröhlich T, Arnold GJ, Zouboulis CC, Schneider NR. LC-MS/MS analysis reveals a broad functional spectrum of proteins in the secretome of sebocytes. Exp Dermatol. 2016;25:66–7.

    Article  PubMed  Google Scholar 

  154. Magnusdottir E, Kalachikov S, Mizukoshi K, Savitsky D, Ishida-Yamamoto A, Panteleyev AA, et al. Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc Natl Acad Sci U S A. 2007;104:14988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Karnik P, Tekeste Z, McCormick TS, Gilliam AC, Price VH, Cooper KD, et al. Hair follicle stem cell-specific PPARgamma deletion causes scarring alopecia. J Invest Dermatol. 2009;129:1243–57.

    Article  CAS  PubMed  Google Scholar 

  156. Miyazaki M, Man WC, Ntambi JM. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr. 2001;131:2260–8.

    CAS  PubMed  Google Scholar 

  157. Jong MC, Gijbels MJ, Dahlmans VE, Gorp PJ, Koopman SJ, Ponec M, et al. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1. J Clin Invest. 1998;101:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol. 2001;11:558–68.

    Article  CAS  PubMed  Google Scholar 

  159. Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet. 2001;28:165–8.

    Article  CAS  PubMed  Google Scholar 

  160. Neufang G, Furstenberger G, Heidt M, Marks F, Muller-Decker K. Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci U S A. 2001;98:7629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dahlhoff M, Muller AK, Wolf E, Werner S, Schneider MR. Epigen transgenic mice develop enlarged sebaceous glands. J Invest Dermatol. 2010;130:623–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos C. Zouboulis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouboulis, C.C., Picardo, M., Ju, Q. et al. Beyond acne: Current aspects of sebaceous gland biology and function. Rev Endocr Metab Disord 17, 319–334 (2016). https://doi.org/10.1007/s11154-016-9389-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9389-5

Keywords

Navigation