Skip to main content

Advertisement

Log in

The development of sweet taste: From biology to hedonics

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

From the age of 2 years, an American child is more likely to consume a sugar-sweetened product than a fruit or vegetable on any given day—a troubling statistic, given that food preferences are established early in childhood, as well as the strong association between this dietary pattern and increased risk of developing a number of chronic diseases. Here, we review the ontogeny and biopsychology of sweet taste, highlighting how a biological drive to prefer sweetness at high concentrations during childhood, which would have conferred an advantage in environments of scarcity, now predisposes children to overconsume all that is sweet in a modern food system replete with added sugars. We review the power of sweet taste to blunt expressions of pain and mask bad tastes in foods as well as factors that predispose some to consume high-sugar diets, including experiential learning and taste preferences driven in part by genetics. Understanding children’s unique vulnerability to our current food environment, rich in both nutritive and nonnutritive sweeteners, is highlighted as a priority for future research to develop evidence-based strategies to help establish healthy dietary behaviors early in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siega-Riz AM, Kinlaw A, Deming DM, Reidy KC. New findings from the feeding infants and toddlers study 2008. Nestle Nutr Workshop Ser Pediatr Program. 2011;68:83–100.

    Article  PubMed  Google Scholar 

  2. Saavedra JM, Deming D, Dattilo A, Reidy K. Lessons from the feeding infants and toddlers study in North America: what children eat, and implications for obesity prevention. Ann Nutr Metab. 2013;62:27–36.

    Article  CAS  PubMed  Google Scholar 

  3. Nickelson J, Lawrence JC, Parton JM, Knowlden AP, McDermott RJ. What proportion of preschool-aged children consume sweetened beverages? J Sch Health. 2014;84:185–94.

    Article  PubMed  Google Scholar 

  4. World Health Organization. Sugars intake for adults and children. 2015. http://www.who.int/nutrition/publications/guidelines/sugars_intake/en/. Accessed 18 Mar 2016.

  5. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2015–2020. 8th ed. Washington D.C.: Government Printing Office; 2015.

    Google Scholar 

  6. Reedy J, Krebs-Smith SM. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. J Am Diet Assoc. 2010;110:1477–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krebs-Smith SM, Guenther PM, Subar AF, Kirkpatrick SI, Dodd KW. Americans do not meet federal dietary recommendations. J Nutr. 2010;140:1832–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ford CN, Slining MM, Popkin BM. Trends in dietary intake among US 2- to 6-year-old children, 1989-2008. J Acad Nutr Diet. 2013;113:35–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drewnowski A, Rehm CD. Consumption of added sugars among US children and adults by food purchase location and food source. Am J Clin Nutr. 2014;100:901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez Steele E, Baraldi LG, Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 2016. doi:10.1136/bmjopen-2015-009892.

    PubMed  PubMed Central  Google Scholar 

  11. Piernas C, Ng SW, Mendez MA, Gordon-Larsen P, Popkin BM. A dynamic panel model of the associations of sweetened beverage purchases with dietary quality and food-purchasing patterns. Am J Epidemiol. 2015;181:661–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dattilo AM, Birch L, Krebs NF, Lake A, Taveras EM, Saavedra JM. Need for early interventions in the prevention of pediatric overweight: a review and upcoming directions. J Obes. 2012;2012:1–18.

    Article  Google Scholar 

  13. Welsh JA, Cunningham SA. The role of added sugars in pediatric obesity. Pediatr Clin N Am. 2011;58:1455–66.

    Article  Google Scholar 

  14. Welsh JA, Sharma A, Cunningham SA, Vos MB. Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation. 2011;123:249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flynn MA, McNeil DA, Maloff B, Mutasingwa D, Wu M, Ford C, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev. 2006;7:7–66.

    Article  PubMed  Google Scholar 

  16. Swinburn BA, Caterson I, Seidell JC, James WP. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004;7:123–46.

    CAS  PubMed  Google Scholar 

  17. Swithers SE. Artificial sweeteners are not the answer to childhood obesity. Appetite. 2015;93:85–90.

    Article  PubMed  Google Scholar 

  18. Yang Q, Zhang Z, Gregg EW, Flanders WD, Merritt R, Hu FB. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014;174:516–24.

    Article  CAS  PubMed  Google Scholar 

  19. American Academy of Pediatric Dentistry; American Academy of Pediatrics. Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies. Pediatr Dent. 2008–2009;30:40–3.

  20. Park S, Lin M, Onufrak S, Li R. Association of sugar-sweetened beverage intake during infancy with dental caries in 6-year-olds. Clin Nutr Res. 2015;4:9–17.

    Article  PubMed  Google Scholar 

  21. Reed DR, Knaapila A. Genetics of taste and smell: poisons and pleasures. Prog Mol Biol Transl Sci. 2010;94:213–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ungar PS, Grine FE, Teaford MF. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE. 2008;3:e2044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Glendinning JI. Is the bitter rejection response always adaptive? Physiol Behav. 1994;56:1217–27.

    Article  CAS  PubMed  Google Scholar 

  24. Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology. 2008;199:457–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009;139:234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, et al. Genetics of taste receptors. Curr Pharm Des. 2014;20:2669–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berridge KC, Kringelbach ML. Building a neuroscience of pleasure and well-being. Psychol Well Being. 2011;1:1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reed DR, Margolskee RF. Gustation genetics: sweet gustducin! Chem Senses. 2010;35:549–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reed DR, McDaniel AH. The human sweet tooth. BMC Oral Health. 2006;6:S17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McLaughlin SK, McKinnon PJ, Margolskee RF. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature. 1992;357:563–9.

    Article  CAS  PubMed  Google Scholar 

  32. Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol. 2009;19:1288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mennella JA, Bobowski NK. The sweetness and bitterness of childhood: insights from basic research on taste preferences. Physiol Behav. 2015;152:502–7.

    Article  CAS  PubMed  Google Scholar 

  34. Mennella JA, Finkbeiner S, Reed DR. The proof is in the pudding: children prefer lower fat but higher sugar than do mothers. Int J Obes. 2012;36:1285–91.

    Article  CAS  Google Scholar 

  35. Mennella JA, Finkbeiner S, Lipchock SV, Hwang LD, Reed DR. Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLoS ONE. 2014;9:e92201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Eny KM, Wolever TM, Corey PN, El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am J Clin Nutr. 2010;92:1501–10.

    Article  CAS  PubMed  Google Scholar 

  37. Dias AG, Eny KM, Cockburn M, Chiu W, Nielsen DE, Duizer L, et al. Variation in the TAS1R2 gene, sweet taste perception and intake of sugars. J Nutrigenet Nutrigenomics. 2015;8:81–90.

    Article  CAS  PubMed  Google Scholar 

  38. Fushan AA, Simons CT, Slack JP, Drayna D. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chem Senses. 2010;35:579–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hwang LD, Zhu G, Breslin PA, Reed DR, Martin NG, Wright MJ. A common genetic influence on human intensity ratings of sugars and high-potency sweeteners. Twin Res Hum Genet. 2015;18:361–7.

    Article  PubMed  Google Scholar 

  40. Taniguchi K. Expression of the sweet receptor protein, T1R3, in the human liver and pancreas. J Vet Med Sci. 2004;66:1311–4.

    Article  CAS  PubMed  Google Scholar 

  41. Kyriazis GA, Soundarapandian MM, Tyberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A. 2012;109:E524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na + −glucose cotransporter 1. Proc Natl Acad Sci U S A. 2007;104:15075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen T, Kaya N, Zhao F-L, Lu S-G, Cao Y, Herness S. Co-expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules α-gustducin and T1R2 in rat taste receptor cells. Neuroscience. 2005;130:229–38.

    Article  CAS  PubMed  Google Scholar 

  44. Herness S, Zhao F-L. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud. Physiol Behav. 2009;97:581–91.

    Article  CAS  PubMed  Google Scholar 

  45. Huang YA, Dando R, Roper SD. Autocrine and paracrine roles for ATP and serotonin in mouse taste buds. J Neurosci. 2009;29:13909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shin Y-K, Martin B, Kim W, White CM, Ji S, Sun Y, et al. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants. PLoS ONE. 2010;5:e12729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kokrashvili Z, Yee KK, Ilegems E, Iwatsuki K, Li Y, Mosinger B, et al. Endocrine taste cells. Br J Nutr. 2014;111:S23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maone TR, Mattes RD, Bernbaum JC, Beauchamp GK. A new method for delivering a taste without fluids to preterm and term infants. Dev Psychobiol. 1990;13:179–91.

    Article  Google Scholar 

  49. Tatzer E, Schubert MT, Timischl W, Simbruner G. Discrimination of taste and preference for sweet in premature babies. Early Hum Dev. 1985;12:23–30.

    Article  CAS  PubMed  Google Scholar 

  50. Smith BA, Blass EM. Taste-mediated calming in premature, preterm, and full-term human infants. Dev Psychol. 1996;32:1084–9.

    Article  Google Scholar 

  51. Desor JA, Maller O, Turner RE. Preference for sweet in humans: infants, children and adults. In: Weiffenbach JM, editor. Taste and development: the genesis of sweet preference. Washington, DC: US Government Printing Office; 1977. p. 161–72.

    Google Scholar 

  52. Desor JA, Maller O, Turner RE. Taste in acceptance of sugars by human infants. J Comp Physiol Psychol. 1973;84:496–501.

    Article  CAS  Google Scholar 

  53. Steiner JE, Glaser D, Hawilo ME, Berridge KC. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci Biobehav Rev. 2001;25:53–74.

    Article  CAS  PubMed  Google Scholar 

  54. Steiner JE. Facial expressions of the neonate infant indicating the hedonics of food-related chemical stimuli. Taste and development: the genesis of sweet preference. Washington, DC: U.S. Government Printing Office; 1977.

    Google Scholar 

  55. Rosenstein D, Oster H. Differential facial responses to four basic tastes in newborns. Child Dev. 1988;59:1555–68.

    Article  CAS  PubMed  Google Scholar 

  56. Crook CK. Taste perception in the newborn infant. Infant Behav Dev. 1978;1:52–69.

    Article  Google Scholar 

  57. Crook CK, Lipsitt LP. Neonatal nutritive sucking: effects of taste stimulation upon sucking rhythm and heart rate. Child Dev. 1976;47:518–22.

    Article  CAS  PubMed  Google Scholar 

  58. Barr RG, Quek VS, Cousineau D, Oberlander TF, Brian JA, Young SN. Effects of intra-oral sucrose on crying, mouthing and hand-mouth contact in newborn and six-week-old infants. Dev Med Child Neurol. 1994;36:608–18.

    Article  CAS  PubMed  Google Scholar 

  59. Barr RG, Pantel MS, Young SN, Wright JH, Hendricks LA, Gravel R. The response of crying newborns to sucrose: is it a “sweetness” effect? Physiol Behav. 1999;66:409–17.

    Article  CAS  PubMed  Google Scholar 

  60. Blass EM, Hoffmeyer LB. Sucrose as an analgesic for newborn infants. Pediatrics. 1991;87:215–8.

    CAS  PubMed  Google Scholar 

  61. Stevens B, Yamada J, Ohlsson A. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst Rev. 2010. doi:10.1002/14651858.CD001069.pub3.

    PubMed  Google Scholar 

  62. Abad F, Diaz NM, Domenech E, Robayna M, Rico J. Oral sweet solution reduces pain-related behaviour in preterm infants. Acta Paediatr. 1996;85:854–8.

    Article  CAS  PubMed  Google Scholar 

  63. Deshmukh LS, Udani RH. Analgesic effect of oral glucose in preterm infants during venipuncture–a double-blind, randomized, controlled trial. J Trop Pediatr. 2002;48:138–41.

    Article  PubMed  Google Scholar 

  64. Harrison D, Stevens B, Bueno M, Yamada J, Adams-Webber T, Beyene J, et al. Efficacy of sweet solutions for analgesia in infants between 1 and 12 months of age: a systematic review. Arch Dis Child. 2010;95:406–13.

    Article  PubMed  Google Scholar 

  65. Bucher HU, Baumgartner R, Bucher N, Seiler M, Fauchere JC. Artificial sweetener reduces nociceptive reaction in term newborn infants. Early Hum Dev. 2000;59:51–60.

    Article  CAS  PubMed  Google Scholar 

  66. Ramenghi LA, Evans DJ, Levene MI. “Sucrose analgesia”: absorptive mechanism or taste perception? Arch Dis Child Fetal Neonatal Ed. 1999;80:F146–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller A, Barr RG, Young SN. The cold pressor test in children: methodological aspects and the analgesic effect of intraoral sucrose. Pain. 1994;56:175–83.

    Article  CAS  PubMed  Google Scholar 

  68. Mennella JA, Pepino MY, Lehmann-Castor SM, Yourshaw LM. Sweet preferences and analgesia during childhood: effects of family history of alcoholism and depression. Addiction. 2010;105:666–75.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pepino MY, Mennella JA. Sucrose-induced analgesia is related to sweet preferences in children but not adults. Pain. 2005;119:210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harrison D, Yamada J, Adams-Webber T, Ohlsson A, Beyene J, Stevens B. Sweet tasting solutions for reduction of needle-related procedural pain in children aged one to 16 years. Cochrane Database Syst Rev. 2015. doi:10.1002/14651858.CD008408.pub3.

    Google Scholar 

  71. Bernasconi S, Petraglia F, Iughetti L, Marcellini C, Lamborghini A, Facchinetti F, et al. Impaired beta-endorphin response to human corticotropin-releasing hormone in obese children. Acta Endocrinol (Copenh). 1988;119:7–10.

    CAS  Google Scholar 

  72. Coy RT, Kanarek RB. Chronic sucrose intake reduces the antagonist effect of beta-funaltrexamine on morphine-induced antinociception in female but not in male rats. Nutr Neurosci. 2006;9:131–9.

    Article  CAS  PubMed  Google Scholar 

  73. D'Anci KE, Kanarek RB, Marks-Kaufman R. Beyond sweet taste: saccharin, sucrose, and polycose differ in their effects upon morphine-induced analgesia. Pharmacol Biochem Behav. 1997;56:341–5.

    Article  PubMed  Google Scholar 

  74. Levine AS, Kotz CM, Gosnell BA. Sugars and fats: the neurobiology of preference. J Nutr. 2003;133:831S–4S.

    CAS  PubMed  Google Scholar 

  75. Levine AS, Kotz CM, Gosnell BA. Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr. 2003;78:834S–42S.

    CAS  PubMed  Google Scholar 

  76. Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res. 2002;10:478–88.

    Article  CAS  PubMed  Google Scholar 

  77. Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience. 2005;134:737–44.

    Article  CAS  PubMed  Google Scholar 

  78. Desor JA, Beauchamp GK. Longitudinal changes in sweet preferences in humans. Physiol Behav. 1987;39:639–41.

    Article  CAS  PubMed  Google Scholar 

  79. Mennella JA, Lukasewycz LD, Griffith JW, Beauchamp GK. Evaluation of the Monell forced-choice, paired-comparison tracking procedure for determining sweet taste preferences across the lifespan. Chem Senses. 2011;36:345–55.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mennella JA, Pepino MY, Reed DR. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics. 2005;115:e216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pepino MY, Mennella JA. Factors contributing to individual differences in sucrose preference. Chem Senses. 2005;30:i319–20.

    Article  PubMed  PubMed Central  Google Scholar 

  82. de Graaf C, Zandstra EH. Sweetness intensity and pleasantness in children, adolescents, and adults. Physiol Behav. 1999;67:513–20.

    Article  PubMed  Google Scholar 

  83. Desor JA, Greene LS, Maller O. Preferences for sweet and salty in 9- to 15-year-old and adult humans. Science. 1975;190:686–7.

    Article  CAS  PubMed  Google Scholar 

  84. Pepino MY, Finkbeiner S, Beauchamp GK, Mennella JA. Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity (Silver Spring). 2010;18:959–65.

    Article  Google Scholar 

  85. Pepino MY, Mennella JA. Effects of cigarette smoking and family history of alcoholism on sweet taste perception and food cravings in women. Alcohol Clin Exp Res. 2007;31:1891–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. James CE, Laing DG, Oram N. A comparison of the ability of 8-9-year-old children and adults to detect taste stimuli. Physiol Behav. 1997;62:193–7.

    Article  CAS  PubMed  Google Scholar 

  87. Joseph PV, Reed DR, Mennella JA. Individual differences among children in sucrose detection thresholds: relationship with age, gender, and bitter taste genotype. Nurs Res. 2016;65:3–12.

    PubMed  Google Scholar 

  88. Bertino M, Wehmer F. Dietary influences on the development of sucrose acceptability in rats. Dev Psychobiol. 1981;14:19–28.

    Article  CAS  PubMed  Google Scholar 

  89. Drewnowski A. Sensory control of energy density at different life stages. Proc Nutr Soc. 2000;59:239–44.

    Article  CAS  PubMed  Google Scholar 

  90. Coldwell SE, Oswald TK, Reed DR. A marker of growth differs between adolescents with high vs. low sugar preference. Physiol Behav. 2009;96:574–80.

    Article  CAS  PubMed  Google Scholar 

  91. Bollen AM. A prospective longitudinal study of urinary excretion of a bone resorption marker in adolescents. Ann Hum Biol. 2000;27:199–211.

    Article  CAS  PubMed  Google Scholar 

  92. Liem DG, Mennella JA. Heightened sour preferences during childhood. Chem Senses. 2003;28:173–80.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Olson CM, Gemmill KP. Association of sweet preference and food selection among four to five year old children. Ecol Food Nutr. 1981;11:145–50.

    Article  Google Scholar 

  94. Beauchamp GK, Moran M. Acceptance of sweet and salty tastes in 2-year-old children. Appetite. 1984;5:291–305.

    Article  CAS  PubMed  Google Scholar 

  95. Filer LJ. Studies of taste preference in infancy and childhood. Pediatr Basic. 1978;12:5–9.

    Google Scholar 

  96. Mennella JA, Reed DR, Mathew PS, Roberts KM, Mansfield CJ. “A spoonful of sugar helps the medicine go down”: bitter masking by sucrose among children and adults. Chem Senses. 2015;40:17–25.

    Article  PubMed  Google Scholar 

  97. Sharafi M, Hayes JE, Duffy VB. Masking vegetable bitterness to improve palatability depends on vegetable type and taste phenotype. Chemosens Percept. 2013;6:8–19.

    Article  CAS  PubMed  Google Scholar 

  98. Kilcast D, den Ridder C, Narain C. Challenges to reducing sugar in foods. In: Weerasinghe D, editor. Sweetness and sweeteners. Washington DC: American Chemical Society; 2008. p. 481–91.

    Chapter  Google Scholar 

  99. Mennella JA, Nicklaus S, Jagolino AL, Yourshaw LM. Variety is the spice of life: strategies for promoting fruit and vegetable acceptance during infancy. Physiol Behav. 2008;94:29–38.

    Article  CAS  PubMed  Google Scholar 

  100. Gerrish CJ, Mennella JA. Flavor variety enhances food acceptance in formula-fed infants. Am J Clin Nutr. 2001;73:1080–5.

    CAS  PubMed  Google Scholar 

  101. Forestell CA, Mennella JA. Early determinants of fruit and vegetable acceptance. Pediatrics. 2007;120:1247–54.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sullivan SA, Birch LL. Pass the sugar, pass the salt: experience dictates preference. Dev Psychol. 1990;26:546–51.

    Article  Google Scholar 

  103. Rozin P. The acquisition of food habits and preferences. In: JD M, SM W, JA H, NE M, SM W, editors. Behavioral health: a handbook of health enhancement and disease prevention. New York: Wiley; 1984. p. 590–607.

    Google Scholar 

  104. Rozin P, Vollmecke TA. Food likes and dislikes. Annu Rev Nutr. 1986;6:433–56.

    Article  CAS  PubMed  Google Scholar 

  105. Beauchamp GK, Cowart BJ. Congenital and experiential factors in the development of human flavor preferences. Appetite. 1985;6:357–72.

    Article  CAS  PubMed  Google Scholar 

  106. Sclafani A. Oral and postoral determinants of food reward. Physiol Behav. 2004;81:773–9.

    Article  CAS  PubMed  Google Scholar 

  107. Liem DG, de Graaf C. Sweet and sour preferences in young children and adults: role of repeated exposure. Physiol Behav. 2004;83:421–9.

    Article  CAS  PubMed  Google Scholar 

  108. Beauchamp GK, Moran M. Dietary experience and sweet taste preference in human infants. Appetite. 1982;3:139–52.

    Article  CAS  PubMed  Google Scholar 

  109. Ong ZY, Muhlhausler BS. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J. 2011;25:2167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Murray SM, Tulloch AJ, Chen EY, Avena NM. Insights revealed by rodent models of sugar binge eating. CNS Spectr. 2015;20:530–6.

    Article  PubMed  Google Scholar 

  111. Bayol SA, Macharia R, Farrington SJ, Simbi BH, Stickland NC. Evidence that a maternal “junk food” diet during pregnancy and lactation can reduce muscle force in offspring. Eur J Nutr. 2009;48:62–5.

    Article  PubMed  Google Scholar 

  112. Mattes RD, Popkin BM. Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr. 2009;89:1–14.

    Article  CAS  PubMed  Google Scholar 

  113. Wiet S, Beyts PK. Sensory characteristics of sucralose and other high intensity sweeteners. J Food Sci. 1992;57:1014–9.

    Article  CAS  Google Scholar 

  114. Simmen B, Hladik CM. Sweet and bitter taste discrimination in primates: scaling effects across species. Folia Primatol (Basel). 1998;69:129–38.

    Article  CAS  Google Scholar 

  115. Mennella JA. The sweet taste of childhood. In: Firestein S, GK B, editors. The senses: a comprehensive reference, Vol 4. Olfaction and Taste. San Diego: Elsevier; 2008. p. 183–8.

    Chapter  Google Scholar 

  116. Wang J, Shang L, Light K, O'Loughlin J, Paradis G, Gray-Donald K. Associations between added sugar (solid vs. liquid) intakes, diet quality, and adiposity indicators in Canadian children. Appl Physiol Nutr Metab. 2015;40:835–41.

    Article  CAS  PubMed  Google Scholar 

  117. Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. PLoS ONE. 2007;2:e698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Fox MK, Gordon A, Nogales R, Wilson A. Availability and consumption of competitive foods in US public schools. J Am Diet Assoc. 2009;109:S57–66.

    Article  PubMed  Google Scholar 

  119. Sylvetsky AC, Greenberg M, Zhao X, Rother KI. What parents think about giving nonnutritive sweteners to their children: a pilot study. Int J Pediatr. 2014. doi:10.1155/2014/819872.

    PubMed  PubMed Central  Google Scholar 

  120. Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav. 2015;152:450–5.

    Article  CAS  PubMed  Google Scholar 

  121. Drewnowski A, Levine AS. Sugar and fat–from genes to culture. J Nutr. 2003;133:829S–30S.

    CAS  PubMed  Google Scholar 

  122. Avena NM, Potenza MN, Gold MS. Why are we consuming so much sugar despite knowing too much can harm us? JAMA Intern Med. 2015;175:145–6.

    Article  PubMed  Google Scholar 

  123. Ren X, Ferreira JG, Zhou L, Shammah-Lagnado SJ, Yeckel CW, de Araujo IE. Nutrient selection in the absence of taste receptor signaling. J Neurosci. 2010;30:8012–23.

    Article  CAS  PubMed  Google Scholar 

  124. Brown RJ, Rother KI. Non-nutritive sweeteners and their role in the gastrointestinal tract. J Clin Endocrinol Metab. 2012;97:2597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rayner M, Scarborough P. The burden of food related ill health in the UK. J Epidemiol Community Health. 2005;59:1054–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This writing of this manuscript was supported by the National Institute of Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH) (grants R01 DC011287, P30 DC00117356) and by NIH postdoctoral training grants T32 DC100004-34 and F32 DC15172. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIDCD or NIH. The funding agencies had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation or contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Mennella.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare. Each is supported by funding provided by National Institutes of Health. Author JAM is supported by NIH grants R01 DC011287, R01 HD37119, and R01 HD072307; author NB is supported by T32 DC100004–34 and F32 DC15172; and author DRR is supported by R01 DC011287 and P30 DC00117356.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mennella, J.A., Bobowski, N.K. & Reed, D.R. The development of sweet taste: From biology to hedonics. Rev Endocr Metab Disord 17, 171–178 (2016). https://doi.org/10.1007/s11154-016-9360-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9360-5

Keywords

Navigation