Skip to main content

Advertisement

Log in

Assembly of adiponectin oligomers

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Adiponectin is among the most studied adipokines, the collection of molecules secreted from adipose tissue. It is also one of the most architecturally complex adipokines with its various oligomeric states that include trimers, hexamers, nonamers (9mers), dodecamers (12mers), and octadecamers (18mers). The importance of adiponectin in metabolic regulation is underscored by its strong positive associations with improvement in insulin action and also decreased risks for developing type 2 diabetes. Understanding the mechanisms involved in maintaining the steady-state concentrations of adiponectin oligomers in circulation is therefore likely to provide important insight into the development of insulin resistance. This review will discuss the current state of knowledge regarding the biochemical composition of adiponectin oligomers, the commonly used techniques to analyze them, and the known post-translational modifications that affect their assembly. Evidence based on in vitro oligomer assembly reactions in support of a “cystine ratchet” model of adiponectin oligomer formation will be considered along with limitations of the evidence. Secretory pathway proteins that have been shown to affect the distribution of adiponectin oligomers will also be discussed along with hypotheses regarding their potential involvement in the cystine ratchet model of adiponectin oligomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ailhaud G. Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. C R Biol. 2006;329(8):570–7. discussion 653–5.

    CAS  PubMed  Google Scholar 

  2. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746–9.

    CAS  PubMed  Google Scholar 

  3. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697–703.

    CAS  PubMed  Google Scholar 

  4. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996;221(2):286–9.

    CAS  PubMed  Google Scholar 

  5. Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem. 1996;120(4):803–12.

    CAS  PubMed  Google Scholar 

  6. Tsao T-S, Lodish HF, Fruebis J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur J Pharmacol. 2002;440(2–3):213–21.

    CAS  PubMed  Google Scholar 

  7. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595–9.

    CAS  PubMed  Google Scholar 

  8. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti- inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86(8):3815–9.

    CAS  PubMed  Google Scholar 

  9. Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol Cell Biol. 2007;27(13):4698–707.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Seino Y, Hirose H, Saito I, Itoh H. High molecular weight multimer form of adiponectin as a useful marker to evaluate insulin resistance and metabolic syndrome in Japanese men. Metabolism. 2007;56(11):1493–9.

    CAS  PubMed  Google Scholar 

  11. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302(2):179–88.

    CAS  PubMed  Google Scholar 

  12. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24(1):29–33.

    CAS  PubMed  Google Scholar 

  13. Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin—a key adipokine in the metabolic syndrome. Diabetes Obes Metab. 2006;8(3):264–80.

    CAS  PubMed  Google Scholar 

  14. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem. 2003;278(11):9073–85.

    CAS  PubMed  Google Scholar 

  15. Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 2008;32 Suppl 7:S13–8.

    CAS  Google Scholar 

  16. Ouchi N, Shibata R, Walsh K. Cardioprotection by adiponectin. Trends Cardiovasc Med. 2006;16(5):141–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Goldstein BJ, Scalia RG, Ma XL. Protective vascular and myocardial effects of adiponectin. Nat Clin Pract Cardiovasc Med. 2009;6(1):27–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Nanayakkara G, Kariharan T, Wang L, Zhong J, Amin R. The cardio-protective signaling and mechanisms of adiponectin. Am J Cardiovasc Dis. 2012;2(4):253–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Maddineni S, Metzger S, Ocón O, Hendricks G, Ramachandran R. Adiponectin gene is expressed in multiple tissues in the chicken: food deprivation influences adiponectin messenger ribonucleic acid expression. Endocrinology. 2005;146(10):4250–6.

    CAS  PubMed  Google Scholar 

  20. Wang ZV, Scherer PE. Adiponectin, cardiovascular function, and hypertension. Hypertension. 2008;51(1):8–14.

    CAS  PubMed  Google Scholar 

  21. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care. 2003;26(8):2442.

    CAS  PubMed  Google Scholar 

  22. Trujillo ME, Scherer PE. Adiponectin—journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257(2):167–75.

    CAS  PubMed  Google Scholar 

  23. Wong GW, Wang J, Hug C, Tsao T-S, Lodish HF. A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sci U S A. 2004;101(28):10302–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. You M, Rogers CQ. Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med (Maywood). 2009;234(8):850–9.

    CAS  Google Scholar 

  25. Wang Y, Lam KSL, Yau M-H, Xu A. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J. 2008;409(3):623–33.

    CAS  PubMed  Google Scholar 

  26. Shapiro L, Scherer PE. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol. 1998;8(6):335–8.

    CAS  PubMed  Google Scholar 

  27. Min X, Lemon B, Tang J, Liu Q, Zhang R, Walker N, et al. Crystal structure of a single-chain trimer of human adiponectin globular domain. FEBS Lett. 2012;586(6):912–7.

    CAS  PubMed  Google Scholar 

  28. Tsao T-S, Murrey HE, Hug C, Lee DH, Lodish HF. Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J Biol Chem. 2002;277(33):29359–62.

    CAS  PubMed  Google Scholar 

  29. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352–63.

    CAS  PubMed  Google Scholar 

  30. Koide T, Nagata K. Collagen. In: Brinckmann J, Notbohm H, Müller PK, editors. Collagen. Springer: Berlin; n.d.

  31. Hausrath AC, Goriely A. The Fourier transforms of curves and filaments and their application to low-resolution protein crystallography. J Appl Cryst. 2009;42(2):268–78.

    CAS  Google Scholar 

  32. Tsao T-S, Tomas E, Murrey HE, Hug C, Lee DH, Ruderman NB, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem. 2003;278(50):50810–7.

    CAS  PubMed  Google Scholar 

  33. Frizzell N, Rajesh M, Jepson MJ, Nagai R, Carson JA, Thorpe SR, et al. Succination of thiol groups in adipose tissue proteins in diabetes: succination inhibits polymerization and secretion of adiponectin. J Biol Chem. 2009;284(38):25772–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hada Y, Yamauchi T, Waki H, Tsuchida A, Hara K, Yago H, et al. Selective purification and characterization of adiponectin multimer species from human plasma. Biochem Biophys Res Commun. 2007;356(2):487–93.

    CAS  PubMed  Google Scholar 

  35. Mashalidis EH, Briggs DB, Zhou M, Vergara AM, Chhun JJ, Ellsworth RK, et al. High-resolution identification of human adiponectin oligomers and regulation by pioglitazone in type 2 diabetic patients. Anal Biochem. 2013;437(2):150–60.

    CAS  PubMed  Google Scholar 

  36. Schraw T, Wang ZV, Halberg N, Hawkins M, Scherer PE. Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology. 2008;149(5):2270–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 2006;55(1):249–59.

    CAS  PubMed  Google Scholar 

  38. Bobbert T, Rochlitz H, Wegewitz U, Akpulat S, Mai K, Weickert MO, et al. Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes. 2005;54(9):2712–9.

    CAS  PubMed  Google Scholar 

  39. Xu A, Chan KW, Hoo RLC, Wang Y, Tan KCB, Zhang J, et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem. 2005;280(18):18073–80.

    CAS  PubMed  Google Scholar 

  40. Briggs DB, Jones CM, Mashalidis EH, Nuñez M, Hausrath AC, Wysocki VH, et al. Disulfide-dependent self-assembly of adiponectin octadecamers from trimers and presence of stable octadecameric adiponectin lacking disulfide bonds in vitro. Biochemistry. 2009;48(51):12345–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Suzuki S, Wilson-Kubalek EM, Wert D, Tsao T-S, Lee DH. The oligomeric structure of high molecular weight adiponectin. FEBS Lett. 2007;581(5):809–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Niemann B, Pan R, Teschner M, Boening A, Silber R-E, Rohrbach S. Age and obesity-associated changes in the expression and activation of components of the AMPK signaling pathway in human right atrial tissue. Exp Gerontol. 2012.

  43. Fisher FFM, Trujillo ME, Hanif W, Barnett AH, McTernan PG, Scherer PE, et al. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia. 2005;48(6):1084–7.

    CAS  PubMed  Google Scholar 

  44. Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem. 2004;279(13):12152–62.

    CAS  PubMed  Google Scholar 

  45. Abbasi F, Chang S-A, Chu JW, Ciaraldi TP, Lamendola C, McLaughlin T, et al. Improvements in insulin resistance with weight loss, in contrast to rosiglitazone, are not associated with changes in plasma adiponectin or adiponectin multimeric complexes. Am J Physiol Regul Integr Comp Physiol. 2006;290(1):R139–44.

    CAS  PubMed  Google Scholar 

  46. Phillips SA, Kung J, Ciaraldi TP, Choe C, Christiansen L, Mudaliar S, et al. Selective regulation of cellular and secreted multimeric adiponectin by antidiabetic therapies in humans. Am J Physiol Endocrinol Metab. 2009;297(3):E767–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Peake PW, Kriketos AD, Campbell LV, Shen Y, Charlesworth JA. The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. Eur J Endocrinol. 2005;153(3):409–17.

    CAS  PubMed  Google Scholar 

  48. Mahadev K, Wu X, Donnelly S, Ouedraogo R, Eckhart AD, Goldstein BJ. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc Res. 2008;78(2):376–84.

    CAS  PubMed  Google Scholar 

  49. Amin RH, Mathews ST, Camp HS, Ding L, Leff T. Selective activation of PPARgamma in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance. Am J Physiol Endocrinol Metab. 2010;298(1):E28–37.

    CAS  PubMed  Google Scholar 

  50. Ebinuma H, Miida T, Yamauchi T, Hada Y, Hara K, Kubota N, et al. Improved ELISA for selective measurement of adiponectin multimers and identification of adiponectin in human cerebrospinal fluid. Clin Chem. 2007;53(8):1541–4.

    CAS  PubMed  Google Scholar 

  51. Aso Y, Yamamoto R, Wakabayashi S, Uchida T, Takayanagi K, Takebayashi K, et al. Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin. Diabetes. 2006;55(7):1954–60.

    CAS  PubMed  Google Scholar 

  52. Sinha MK, Songer T, Xiao Q, Sloan JH, Wang J, Ji S, et al. Analytical validation and biological evaluation of a high molecular-weight adiponectin ELISA. Clin Chem. 2007;53(12):2144–51.

    CAS  PubMed  Google Scholar 

  53. Wang Y, Lam KSL, Chan L, Chan KW, Lam JBB, Lam MC, et al. Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J Biol Chem. 2006;281(24):16391–400.

    CAS  PubMed  Google Scholar 

  54. Peake PW, Hughes JT, Shen Y, Charlesworth JA. Glycosylation of human adiponectin affects its conformation and stability. J Mol Endocrinol. 2007;39(1):45–52.

    CAS  PubMed  Google Scholar 

  55. Pajvani UB, Scherer PE. Adiponectin: systemic contributor to insulin sensitivity. Curr Diab Rep. 2003;3(3):207–13.

    PubMed  Google Scholar 

  56. Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med. 2004;10(12):1384–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology. 2004;145(1):367–83.

    CAS  PubMed  Google Scholar 

  58. Halberg N, Schraw TD, Wang ZV, Kim J-Y, Yi J, Hamilton MP, et al. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes. 2009;58(9):1961–70.

    PubMed Central  PubMed  Google Scholar 

  59. Kim J-A, Nuñez M, Briggs DB, Laskowski BL, Chhun JJ, Eleid JK, et al. Extracellular conversion of adiponectin hexamers into trimers. Biosci Rep. 2012;32(6):641–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Basu R, Pajvani UB, Rizza RA, Scherer PE. Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes. 2007;56(8):2174–7.

    CAS  PubMed  Google Scholar 

  61. O’Leary VB, Jorett AE, Marchetti CM, Gonzalez F, Phillips SA, Ciaraldi TP, et al. Enhanced adiponectin multimer ratio and skeletal muscle adiponectin receptor expression following exercise training and diet in older insulin-resistant adults. Am J Physiol Endocrinol Metab. 2007;293(1):E421–7.

    PubMed  Google Scholar 

  62. Aso Y, Yamamoto R, Suetsugu M, Matsumoto S, Wakabayashi S, Matsutomo R, et al. Comparison of the effects of pioglitazone and voglibose on circulating total and high-molecular-weight adiponectin, and on two fibrinolysis inhibitors, in patients with type 2 diabetes. Diabet Med. 2007;24(9):962–8.

    CAS  PubMed  Google Scholar 

  63. Heidemann C, Sun Q, van Dam RM, Meigs JB, Zhang C, Tworoger SS, et al. Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women. Ann Intern Med. 2008;149(5):307–16.

    PubMed Central  PubMed  Google Scholar 

  64. Blüher M, Brennan AM, Kelesidis T, Kratzsch J, Fasshauer M, Kralisch S, et al. Total and high-molecular weight adiponectin in relation to metabolic variables at baseline and in response to an exercise treatment program: comparative evaluation of three assays. Diabetes Care. 2007;30(2):280–5.

    PubMed  Google Scholar 

  65. Komura N, Kihara S, Sonoda M, Kumada M, Fujita K, Hiuge A, et al. Clinical significance of high-molecular weight form of adiponectin in male patients with coronary artery disease. Circ J. 2008;72(1):23–8.

    CAS  PubMed  Google Scholar 

  66. Almeda-Valdes P, Cuevas-Ramos D, Mehta R, Gomez-Perez FJ, Cruz-Bautista I, Arellano-Campos O, et al. Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance. Cardiovasc Diabetol. 2010;9:26.

    PubMed Central  PubMed  Google Scholar 

  67. Liu Y, Retnakaran R, Hanley A, Tungtrongchitr R, Shaw C, Sweeney G. Total and high molecular weight but not trimeric or hexameric forms of adiponectin correlate with markers of the metabolic syndrome and liver injury in Thai subjects. J Clin Endocrinol Metab. 2007;92(11):4313–8.

    CAS  PubMed  Google Scholar 

  68. Wang AY-H, Hickman IJ, Richards AA, Whitehead JP, Prins JB, Macdonald GA. High molecular weight adiponectin correlates with insulin sensitivity in patients with hepatitis C genotype 3, but not genotype 1 infection. Am J Gastroenterol. 2005;100(12):2717–23.

    CAS  PubMed  Google Scholar 

  69. Richards AA, Colgrave ML, Zhang J, Webster J, Simpson F, Preston E, et al. Sialic acid modification of adiponectin is not required for multimerization or secretion but determines half-life in circulation. Mol Endocrinol. 2010;24(1):229–39.

    CAS  PubMed  Google Scholar 

  70. Inoue T, Takemori K, Yamamoto K, Ito H. Characterization of Wistar-Kyoto rats showing hyperadiponectinemia. Life Sci. 2010;86(9–10):344–50.

    CAS  PubMed  Google Scholar 

  71. Morisaki H, Yamanaka I, Iwai N, Miyamoto Y, Kokubo Y, Okamura T, et al. CDH13 gene coding t-cadherin influences variations in plasma adiponectin levels in the Japanese population. Hum Mutat. 2012;33(2):402–10.

    CAS  PubMed  Google Scholar 

  72. Williams AS, Kasahara DI, Verbout NG, Fedulov AV, Zhu M, Si H, et al. Role of the adiponectin binding protein, T-cadherin (Cdh13), in allergic airways responses in mice. PLoS One. 2012;7(7):e41088.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Phillips SA, Ciaraldi TP, Oh DK, Savu MK, Henry RR. Adiponectin secretion and response to pioglitazone is depot dependent in cultured human adipose tissue. Am J Physiol Endocrinol Metab. 2008;295(4):E842–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC, Kern PA. Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab. 2006;290(1):E42–6.

    CAS  PubMed  Google Scholar 

  75. Savu MK, Phillips SA, Oh DK, Park K, Gerlan C, Ciaraldi TP, et al. Response of adiponectin and its receptors to changes in metabolic state after gastric bypass surgery: dissociation between adipose tissue expression and circulating levels. Surg Obes Relat Dis. 2009;5(2):172–80.

    PubMed  Google Scholar 

  76. Wang ZV, Schraw TD, Kim J-Y, Khan T, Rajala MW, Follenzi A, et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol. 2007;27(10):3716–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Liu M, Zhou L, Xu A, Lam KSL, Wetzel MD, Xiang R, et al. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci U S A. 2008;105(47):18302–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Liu M, Xiang R, Wilk SA, Zhang N, Sloane LB, Azarnoush K, et al. Fat-specific DsbA-L overexpression promotes adiponectin multimerization and protects mice from diet-induced obesity and insulin resistance. Diabetes. 2012;61(11):2776–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Zhou L, Liu M, Zhang J, Chen H, Dong LQ, Liu F. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes. 2010;59(11):2809–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Radjainia M, Wang Y, Mitra AK. Structural polymorphism of oligomeric adiponectin visualized by electron microscopy. J Mol Biol. 2008;381(2):419–30.

    CAS  PubMed  Google Scholar 

  81. Briggs DB, Giron RM, Malinowski PR, Nunez M, Tsao T-S. Role of redox environment on the oligomerization of higher molecular weight adiponectin. BMC Biochem. 2011;12(1):24.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Briggs DB, Giron RM, Schnittker K, Hart MV, Park CK, Hausrath AC, et al. Zinc enhances adiponectin oligomerization to octadecamers but decreases the rate of disulfide bond formation. Biometals. 2012;25(2):469–86.

    CAS  PubMed  Google Scholar 

  83. Banga A, Bodles AM, Rasouli N, Ranganathan G, Kern PA, Owens RJ. Calcium is involved in formation of high molecular weight adiponectin. Metab Syndr Relat Disord. 2008;6(2):103–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Richards AA, Stephens T, Charlton HK, Jones A, Macdonald GA, Prins JB, et al. Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol Endocrinol. 2006;20(7):1673–87.

    CAS  PubMed  Google Scholar 

  85. Wang Y, Xu A, Knight C, Xu LY, Cooper GJS. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J Biol Chem. 2002;277(22):19521–9.

    CAS  PubMed  Google Scholar 

  86. Wang Y, Lu G, Wong WPS, Vliegenthart JFG, Gerwig GJ, Lam KSL, et al. Proteomic and functional characterization of endogenous adiponectin purified from fetal bovine serum. Proteomics. 2004;4(12):3933–42.

    CAS  PubMed  Google Scholar 

  87. Sato C, Yasukawa Z, Honda N, Matsuda T, Kitajima K. Identification and adipocyte differentiation-dependent expression of the unique disialic acid residue in an adipose tissue specific glycoprotein, adipo Q. J Biol Chem. 2001;29:29.

    Google Scholar 

  88. Butler WT, Cunningham LW. Evidence for the linkage of a disaccharide to hydroxylysine in tropocollagen. J Biol Chem. 1966;241(17):3882–8.

    CAS  PubMed  Google Scholar 

  89. Yonemasu K, Shinkai H, Sasaki T. Comparable content of hydroxylysine-linked glycosides in subcomponents C1q of the first component of human, bovine and mouse complement. Coll Relat Res. 1981;1(4):385–90.

    CAS  PubMed  Google Scholar 

  90. Bann JG, Peyton DH, Bächinger HP. Sweet is stable: glycosylation stabilizes collagen. FEBS Lett. 2000;473(2):237–40.

    CAS  PubMed  Google Scholar 

  91. Bann JG, Bächinger HP. Glycosylation/hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix. J Biol Chem. 2000;275(32):24466–9.

    CAS  PubMed  Google Scholar 

  92. Brodsky B, Shah NK. Protein motifs. 8. The triple-helix motif in proteins. FASEB J. 1995;9(15):1537–46.

    CAS  PubMed  Google Scholar 

  93. Brodsky-Doyle B, Leonard KR, Reid KB. Circular-dichroism and electron-microscopy studies of human subcomponent C1q before and after limited proteolysis by pepsin. Biochem J. 1976;159(2):279–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Cortini M, Sitia R. From antibodies to adiponectin: role of ERp44 in sizing and timing protein secretion. Diabetes Obes Metab. 2010;12 Suppl 2:39–47.

    CAS  PubMed  Google Scholar 

  95. Ladner JE, Parsons JF, Rife CL, Gilliland GL, Armstrong RN. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1. Biochemistry. 2004;43(2):352–61.

    CAS  PubMed  Google Scholar 

  96. Pemble SE, Wardle AF, Taylor JB. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J. 1996;319(Pt 3):749–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Morel F, Aninat C. The glutathione transferase kappa family. Drug Metab Rev. 2011;43(2):281–91.

    CAS  PubMed  Google Scholar 

  98. Theodoratos A, Blackburn AC, Coggan M, Cappello J, Larter CZ, Matthaei KI, et al. The impact of glutathione transferase kappa deficiency on adiponectin multimerisation in vivo. Int J Obes (Lond). 2012;36(10):1366–9.

    CAS  Google Scholar 

  99. Sevier CS, Kaiser CA. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta. 2008;1783(4):549–56.

    CAS  PubMed  Google Scholar 

  100. Freedman RB. A non-catalytic disulphide bond regulating redox flux in the ER oxidative folding pathway. EMBO J. 2009;28(3):169–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Tsao TS, Hug C, Lodish HF. Adipokines: regulators of metabolic integration and energy metabolism. In: LeRoith D, Taylor SI, Olefsky JM, editors. Diabetes mellitus: a fundamental and clinical text (3rd ed, Chapter 65, p xviii, 1540 p.). Philadelphia: Lippincott Williams & Wilkins.

  102. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Merksamer PI, Trusina A, Papa FR. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell. 2008;135(5):933–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Avezov E, Cross BCS, Kaminski Schierle GS, Winters M, Harding HP, Melo EP, et al. Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox. J Cell Biol. 2013;201(2):337–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Margittai E, Sitia R. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic. 2011;12(1):1–8.

    CAS  PubMed  Google Scholar 

  106. Appenzeller-Herzog C. Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum. J Cell Sci. 2011;124(6):847–55.

    CAS  PubMed  Google Scholar 

  107. Radjainia M, Huang B, Bai B, Schmitz M, Yang SH, Harris PWR, et al. A highly conserved tryptophan in the N-terminal variable domain regulates disulfide bond formation and oligomeric assembly of adiponectin. FEBS J. 2012.

  108. Riera-Guardia N, Rothenbacher D. The effect of thiazolidinediones on adiponectin serum level: a meta-analysis. Diabetes Obes Metab. 2008;10(5):367–75.

    CAS  PubMed  Google Scholar 

  109. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.

    CAS  PubMed  Google Scholar 

  110. Zeng Q, Fu L, Takekoshi K, Kawakami Y, Isobe K. Effects of short-term exercise on adiponectin and adiponectin receptor levels in rats. J Atheroscler Thromb. 2007;14(5):261–5.

    CAS  PubMed  Google Scholar 

  111. Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch. 2007;455(3):479–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Coughlin CC, Finck BN, Eagon JC, Halpin VJ, Magkos F, Mohammed BS, et al. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity (Silver Spring). 2007;15(3):640–5.

    CAS  Google Scholar 

  113. Tonelli J, Li W, Kishore P, Pajvani UB, Kwon E, Weaver C, et al. Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes. 2004;53(6):1621–9.

    CAS  PubMed  Google Scholar 

  114. Bodles AM, Banga A, Rasouli N, Ono F, Kern PA, Owens RJ. Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes. Am J Physiol Endocrinol Metab. 2006;291(5):E1100–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks Dr. Andrew Hausrath for discussions, the density filament models of adiponectin oligomers, and the phrase cystine ratchet model. The author also thanks Dr. Lisa Rezende for discussions of adiponectin assembly. Electron micrographs of trimer and hexamer were originally published in the Journal of Biological Chemistry by Tsao et al., Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity, 2003; Vol 278:50810-7, Copyright the American Society for Biochemistry and Molecular Biology. Electron micrographs of 18mers were reprinted from FEBS Letters, Vol 581:809-14, Suzuki et al., The Oligomeric structure of high molecular weight adiponectin, Copyright (2007), with permission from Elsevier.

Conflict of interest

The author certifies that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsu-Shuen Tsao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsao, TS. Assembly of adiponectin oligomers. Rev Endocr Metab Disord 15, 125–136 (2014). https://doi.org/10.1007/s11154-013-9256-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9256-6

Keywords

Navigation