Skip to main content
Log in

Body composition in infants: Evidence for developmental programming and techniques for measurement

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The consequences of fetal growth retardation remain unclear, in part because they appear to vary between industrialized and developing countries. Data on body composition offer a new opportunity to investigate this issue, and may be of particular value in addressing the controversial role of nutrition in infancy, which has been proposed by some to boost survival, and by others to increase long-term risk of chronic diseases. The uncertainty regarding the effects of post-natal nutrition is presenting challenges to nutritional policy as many countries undergo the nutrition transition, whereby the nutritional status of individuals may shift within the life-course. A theoretical model, building on the thrifty phenotype hypothesis, is presented to clarify how body composition data can address this dilemma. Measurements of body composition can now be obtained in infants and children using several different technologies, indicating that large-scale studies can now be conducted to investigate objectively the association between early growth patterns and later health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Doak CM, Adair LS, Bentley M, Monteiro C, Popkin BM. The dual burden household and the nutrition transition paradox. Int J Obes (Lond). 2005;29(1):129–36.

    Article  CAS  Google Scholar 

  2. Lahariya C, Sudfeld CR, Lahariya D, Tomar SS. Causes of child deaths in India, 1985–2008: a systematic review of literature. Indian J Pediatr. 2010;77(11):1303–11.

    Article  PubMed  Google Scholar 

  3. Shetty PS. Nutrition transition in India. Public Health Nutr. 2002;5(1A):175–82.

    Article  PubMed  Google Scholar 

  4. Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ. 1987;65(5):663–737.

    PubMed  CAS  Google Scholar 

  5. Schooling CM, Jiang C, Zhang W, Lam TH, Cheng KK, Leung GM. Adolescent build and diabetes: the Guangzhou Biobank Cohort Study. Ann Epidemiol. 2011;21(1):61–6.

    Article  PubMed  Google Scholar 

  6. Wells JCK. The evolutionary biology of human body fatness: thrift and control. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  7. James WP, Ferro-Luzzi A, Waterlow JC. Definition of chronic energy deficiency in adults. Report of a working party of the International Dietary Energy Consultative Group. Eur J Clin Nutr. 1988;42(12):969–81.

    PubMed  CAS  Google Scholar 

  8. Victora CG, Barros FC, Horta BL, Martorell R. Short-term benefits of catch-up growth for small-for-gestational-age infants. Int J Epidemiol. 2001;30(6):1325–30.

    Article  PubMed  CAS  Google Scholar 

  9. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371(9609):340–57.

    Article  PubMed  CAS  Google Scholar 

  10. Barker DJ. Mothers, babies and health in later life. Edinburgh: Churchill; 1998.

    Google Scholar 

  11. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353(17):1802–9.

    Article  PubMed  CAS  Google Scholar 

  12. Forsen T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJ. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ. 1999;319(7222):1403–7.

    Article  PubMed  CAS  Google Scholar 

  13. Stein CE, Fall CH, Kumaran K, Osmond C, Cox V, Barker DJ. Fetal growth and coronary heart disease in south India. Lancet. 1996;348(9037):1269–73.

    Article  PubMed  CAS  Google Scholar 

  14. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601.

    Article  PubMed  CAS  Google Scholar 

  15. Yajnik CS, Fall CH, Coyaji KJ, Hirve SS, Rao S, Barker DJ, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord. 2003;27(2):173–80.

    Article  PubMed  CAS  Google Scholar 

  16. Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev. 2002;3(3):141–6.

    Article  PubMed  CAS  Google Scholar 

  17. Wells JCK. Historical cohort studies and the early origins of disease hypothesis: making sense of the evidence. Proc Nutr Soc. 2009;68:179–88.

    Article  PubMed  Google Scholar 

  18. Wells JC. The thrifty phenotype: an adaptation in growth or metabolism? Am J Hum Biol. 2011;23(1):65–75.

    Article  PubMed  Google Scholar 

  19. Poston L. Intergenerational transmission of insulin resistance and type 2 diabetes. (Translated from Eng) Prog Biophys Mol Biol. 2011;106(1):315–22.

    Article  CAS  Google Scholar 

  20. Kumaran K, Fall CH, Martyn CN, Vijayakumar M, Stein C, Shier R. Blood pressure, arterial compliance, and left ventricular mass: no relation to small size at birth in south Indian adults. Heart. 2000;83(3):272–7.

    Article  PubMed  CAS  Google Scholar 

  21. Stettler N, Kumanyika SK, Katz SH, Zemel BS, Stallings VA. Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am J Clin Nutr. 2003;77(6):1374–8.

    PubMed  CAS  Google Scholar 

  22. Dunger DB, Salgin B, Ong KK. Session 7: early nutrition and later health early developmental pathways of obesity and diabetes risk. Proc Nutr Soc. 2007;66(3):451–7 (in eng).

    Article  PubMed  CAS  Google Scholar 

  23. Wells JC, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition. Proc Nutr Soc. 2007;66(3):423–34.

    Article  PubMed  Google Scholar 

  24. Forsén T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med. 2000;133(3):176–82.

    PubMed  Google Scholar 

  25. Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350(9):865–75.

    Article  PubMed  CAS  Google Scholar 

  26. Singhal A, Cole TJ, Lucas A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet. 2001;357(9254):413–9.

    Article  PubMed  CAS  Google Scholar 

  27. Singhal A, Fewtrell M, Cole TJ, Lucas A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet. 2003;361(9363):1089–97.

    Article  PubMed  CAS  Google Scholar 

  28. Singhal A, Kennedy K, Lanigan J, Fewtrell M, Cole TJ, Stephenson T, et al. Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized controlled trials. Am J Clin Nutr. 2010;92(5):1133–44.

    Article  PubMed  CAS  Google Scholar 

  29. Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A. Is slower early growth beneficial for long-term cardiovascular health? Circulation. 2004;109(9):1108–13.

    Article  PubMed  Google Scholar 

  30. Singhal A, Cole TJ, Fewtrell M, Lucas A. Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study. Lancet. 2004;363(9421):1571–8.

    Article  PubMed  CAS  Google Scholar 

  31. Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease-the hypothesis revisited. BMJ. 1999;319(7204):245–9.

    Article  PubMed  CAS  Google Scholar 

  32. Singhal A, Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet. 2004;363(9421):1642–5.

    Article  PubMed  Google Scholar 

  33. Metcalfe NB, Monaghan P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001;16(5):254–60.

    Article  PubMed  Google Scholar 

  34. Stettler N, Stallings VA, Troxel AB, Zhao J, Schinnar R, Nelson SE, et al. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation. 2005;111(15):1897–903.

    Article  PubMed  Google Scholar 

  35. Evans KC, Evans RG, Royal R, Esterman AJ, James SL. Effect of caesarean section on breast milk transfer to the normal term newborn over the first week of life. Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F380–2.

    Article  PubMed  CAS  Google Scholar 

  36. Muhlhausler BS, Duffield JA, Ozanne SE, Pilgrim C, Turner N, Morrison JL, et al. The transition from fetal growth restriction to accelerated postnatal growth: a potential role for insulin signalling in skeletal muscle. J Physiol. 2009;587(Pt 17):4199–211.

    Article  PubMed  CAS  Google Scholar 

  37. De Blasio MJ, Gatford KL, McMillen IC, Robinson JS, Owens JA. Placental restriction of fetal growth increases insulin action, growth, and adiposity in the young lamb. Endocrinology. 2007;148(3):1350–8.

    Article  PubMed  Google Scholar 

  38. Sachdev HS, Fall CH, Osmond C, Lakshmy R, Dey Biswas SK, Leary SD, et al. Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. Am J Clin Nutr. 2005;82(2):456–66.

    PubMed  CAS  Google Scholar 

  39. Li H, Stein AD, Barnhart HX, Ramakrishnan U, Martorell R. Associations between prenatal and postnatal growth and adult body size and composition. Am J Clin Nutr. 2003;77(6):1498–505.

    PubMed  CAS  Google Scholar 

  40. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967–71.

    Article  PubMed  CAS  Google Scholar 

  41. Wells JC, Haroun D, Levene D, Darch T, Williams JE, Fewtrell MS. Prenatal and postnatal programming of body composition in obese children and adolescents: evidence from anthropometry, DXA and the 4-component model. Int J Obes (Lond). 2011;35(4):534–40.

    Article  CAS  Google Scholar 

  42. Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ. 2005;331(7522):929.

    Article  PubMed  Google Scholar 

  43. Stettler N, Zemel BS, Kumanyika S, Stallings VA. Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics. 2002;109(2):194–9.

    Article  PubMed  Google Scholar 

  44. Ekelund U, Ong K, Linné Y, Neovius M, Brage S, Dunger DB, et al. Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm Weight Development Study (SWEDES). Am J Clin Nutr. 2006;83(2):324–30.

    PubMed  CAS  Google Scholar 

  45. Chomtho S, Wells JC, Williams JE, Davies PS, Lucas A, Fewtrell MS. Infant growth and later body composition: evidence from the 4-component model. Am J Clin Nutr. 2008;87(6):1776–84.

    PubMed  CAS  Google Scholar 

  46. Wells JC, Hallal PC, Wright A, Singhal A, Victora CG. Fetal, infant and childhood growth: relationships with body composition in Brazilian boys aged 9 years. Int J Obes (Lond). 2005;29(10):1192–8.

    Article  CAS  Google Scholar 

  47. Kuzawa CW. Adipose tissue in human infancy and childhood: an evolutionary perspective. Am J Phys Anthropol Suppl. 1998;27:177–209.

    Article  Google Scholar 

  48. Godfrey KM, Gluckman PD, Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab. 2010;21(4):199–205.

    Article  PubMed  CAS  Google Scholar 

  49. Soto N, Bazaes RA, Peña V, Salazar T, Avila A, Iñiguez G, et al. Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. J Clin Endocrinol Metab. 2003;88(8):3645–50.

    Article  PubMed  CAS  Google Scholar 

  50. Mericq V, Ong KK, Bazaes R, Peña V, Avila A, Salazar T, et al. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia. 2005;48(12):2609–14.

    Article  PubMed  CAS  Google Scholar 

  51. Iniguez G, Ong K, Bazaes R, Avila A, Salazar T, Dunger D, et al. Longitudinal changes in insulin-like growth factor-I, insulin sensitivity, and secretion from birth to age three years in small-for-gestational-age children. J Clin Endocrinol Metab. 2006;91(11):4645–9.

    Article  PubMed  CAS  Google Scholar 

  52. Ibanez L, Ong K, Dunger DB, de ZF. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab. 2006;91(6):2153–8.

    Article  PubMed  CAS  Google Scholar 

  53. Wells JC. Maternal capital and the metabolic ghetto: an evolutionary perspective on the transgenerational basis of health inequalities. Am J Hum Biol. 2010;22(1):1–17.

    Article  PubMed  Google Scholar 

  54. Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ. Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr. 1999;69(5):904–12.

    PubMed  CAS  Google Scholar 

  55. Thomas EL, Saeed N, Hajnal JV, Brynes A, Goldstone AP, Frost G, et al. Magnetic resonance imaging of total body fat. J Appl Physiol. 1998;85(5):1778–85.

    PubMed  CAS  Google Scholar 

  56. Wells JC, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006;91(7):612–7.

    Article  PubMed  CAS  Google Scholar 

  57. Harrington TA, Thomas EL, Frost G, Modi N, Bell JD. Distribution of adipose tissue in the newborn. Pediatr Res. 2004;55(3):437–41.

    Article  PubMed  Google Scholar 

  58. Wells JC, Fewtrell MS, Davies PS, Williams JE, Coward WA, Cole TJ. Prediction of total body water in infants and children. Arch Dis Child. 2005;90(9):965–71.

    Article  PubMed  CAS  Google Scholar 

  59. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5 Suppl):1169–75.

    PubMed  CAS  Google Scholar 

  60. Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007;85(1):90–5.

    PubMed  CAS  Google Scholar 

  61. Urlando A, Dempster P, Aitkens S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res. 2003;53(3):486–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. K. Wells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, J.C.K. Body composition in infants: Evidence for developmental programming and techniques for measurement. Rev Endocr Metab Disord 13, 93–101 (2012). https://doi.org/10.1007/s11154-012-9213-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-012-9213-9

Keywords

Navigation