Skip to main content

Advertisement

Log in

Melatonin formation in mammals: In vivo perspectives

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Melatonin is a hormone secreted from the pineal gland specifically at night and contributes to a wide array of physiological functions in mammals. Melatonin is one of the most well understood output of the circadian clock located in the suprachiasmatic nucleus. Melatonin synthesis is controlled distally via the circadian clock located in the suprachiasmatic nucleus and proximally regulated by norepinephrine released in response to the circadian clock signals. To understand melatonin synthesis in vivo, we have performed microdialysis analysis of the pineal gland, which monitors melatonin as well as the precursor (serotonin) and intermediate (N-acetylserotonin) of melatonin synthesis in freely moving animals in realtime at high resolution. Our data revealed a number of novel features of melatonin production undetected using conventional techniques, which include (1) large inter-individual variations of melatonin onset timing; (2) circadian regulation of serotonin synthesis and secretion in the pineal gland; and (3) a revised view on the rate-limiting step of melatonin formation in vivo. This article will summarize the main findings from our laboratory regarding melatonin formation in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borjigin J, Li X, Snyder SH. The pineal gland and melatonin: molecular and pharmacologic regulation. Annual Reviews in Pharmacology and Toxicology, 1999.

  2. Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 2003;55(2):325–95.

    Article  CAS  PubMed  Google Scholar 

  3. Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia. 1993;49(8):654–64.

    Article  CAS  PubMed  Google Scholar 

  4. Skene DJ, Arendt J. Human circadian rhythms: physiological and therapeutic relevance of light and melatonin. Ann Clin Biochem. 2006;43(Pt 5):344–53.

    Article  CAS  PubMed  Google Scholar 

  5. Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsater H, et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry. 2008;13(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  6. Jasser SA, Blask DE, Brainard GC. Light during darkness and cancer: relationships in circadian photoreception and tumor biology. Canc Causes Contr. 2006;17(4):515–23.

    Article  Google Scholar 

  7. Peschke E. Melatonin, endocrine pancreas and diabetes. J Pineal Res. 2008;44(1):26–40.

    CAS  PubMed  Google Scholar 

  8. Klein DC. Arylalkylamine N-acetyltransferase: "the Timezyme". J Biol Chem. 2007;282(7):4233–7.

    Article  CAS  PubMed  Google Scholar 

  9. Maronde E, Pfeffer M, Glass Y, Stehle JH. Transcription factor dynamics in pineal gland and liver of the Syrian hamster (Mesocricetus auratus) adapts to prevailing photoperiod. J Pineal Res. 2007;43(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  10. Falcon J, Besseau L, Fuentes M, Sauzet S, Magnanou E, Boeuf G. Structural and functional evolution of the pineal melatonin system in vertebrates. Ann N Y Acad Sci. 2009;1163:101–11.

    Article  CAS  PubMed  Google Scholar 

  11. Liu T, Borjigin J. Relationship between nocturnal serotonin surge and melatonin onset in rodent pineal gland. Journal of Circadian Rhythms. 2006.

  12. Gronfier C, Wright Jr KP, Kronauer RE, Czeisler CA. Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci U S A. 2007;104(21):9081–6.

    Article  CAS  PubMed  Google Scholar 

  13. Perreau-Lenz S, Kalsbeek A, Van Der Vliet J, Pevet P, Buijs RM. In vivo evidence for a controlled offset of melatonin synthesis at dawn by the suprachiasmatic nucleus in the rat. Neuroscience. 2005;130(3):797–803.

    Article  CAS  PubMed  Google Scholar 

  14. Sun X, Deng J, Liu T, Borjigin J. Circadian 5-HT production regulated by adrenergic signaling. Proceedings of the National Academy of Sciences. 2002.

  15. Huang Z, Liu T, Chattoraj A, Ahmed S, Wang MM, Deng J, et al. Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland. J Pineal Res. 2008;45(4):506–14.

    Article  CAS  PubMed  Google Scholar 

  16. Simonneaux V, Sinitskaya N, Salingre A, Garidou ML, Pevet P. Rat and Syrian hamster: two models for the regulation of AANAT gene expression. Chronobiol Int. 2006;23(1–2):351–9.

    Article  CAS  PubMed  Google Scholar 

  17. Borjigin J, Wang MM, Snyder SH. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature. 1995.

  18. Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC. Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology. 1996;137(7):3033–45.

    Article  CAS  PubMed  Google Scholar 

  19. Lee SJ, Liu T, Chattoraj A, Zhang LS, Wang L, Lee TM, Wang MM, Borjigin J. Posttranscriptional regulation of pineal melatonin synthesis in Octodon degus. J Pineal Res. 2009;46(5):in print.

  20. Liu T, Borjigin J. N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night. Journal of Pineal Research. 2005.

  21. Miguez JM, Simonneaux V, Pevet P. The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. J Pineal Res. 1997;23(2):63–71.

    Article  CAS  PubMed  Google Scholar 

  22. Arendt J. Melatonin in humans: it’s about time. J Neuroendocrinol. 2005;17(8):537–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kim JS, Coon SL, Blackshaw S, Cepko CL, Moller M, Mukda S, et al. Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression. J Biol Chem. 2005;280(1):677–84.

    CAS  PubMed  Google Scholar 

  24. Klein DC. Evolution of the vertebrate pineal gland: the AANAT hypothesis. Chronobiol Int. 2006;23(1–2):5–20.

    Article  CAS  PubMed  Google Scholar 

  25. Huang Z, Deng J, Borjigin J. A novel H28Y mutation in LEC rats leads to decreased NAT protein stability in vivo and in vitro. J Pineal Res. 2005;39(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  26. Huang Z, Chattoraj A, Li X, Snyder SH, Borjigin J. The increased degradation of NAT-H28Y mutant protein is due to a reduced interaction with 14-3-3. J Pineal Res. 2009;46(1):119–20.

    Article  CAS  PubMed  Google Scholar 

  27. Borjigin J, Payne AS, Deng J, Li X, Wang MM. A novel pineal night-specific ATPase encoded by the Wilson Disease Gene. Journal of Neuroscience. 1999.

  28. Ahmed S, Deng J, Borjigin J. A new strain of rat for functional analysis of PINA. Molecular Brain Research. 2005.

  29. Choi BH, Chae HD, Park TJ, Oh J, Lim J, Kang SS, et al. Protein kinase C regulates the activity and stability of serotonin N-acetyltransferase. J Neurochem. 2004;90(2):442–54.

    Article  CAS  PubMed  Google Scholar 

  30. Li X. The regulation of tissue-specific and rhythmic expression of serotonin N-acetyltransferase. Baltimore, MD: Neuroscience. The Johns Hopkins University. 2000. 90.

  31. Borjigin J, Wang MM, Snyder SH. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature. 1995;378(6559):783–5.

    Article  CAS  PubMed  Google Scholar 

  32. Coon SL, Roseboom PH, Baler R, Weller JL, Namboodiri MA, Koonin EV, et al. Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science. 1995;270(5242):1681–3.

    Article  CAS  PubMed  Google Scholar 

  33. Craft CM, Murage J, Brown B, Zhan-Poe X. Bovine arylalkylamine N-acetyltransferase activity correlated with mRNA expression in pineal and retina. Brain Res Mol Brain Res. 1999;65(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  34. Ackermann K, Bux R, Rub U, Korf HW, Kauert G, Stehle JH. Characterization of human melatonin synthesis using autoptic pineal tissue. Endocrinology. 2006;147(7):3235–42.

    Article  CAS  PubMed  Google Scholar 

  35. Wehr TA. The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab. 1991;73(6):1276–80.

    Article  CAS  PubMed  Google Scholar 

  36. Schomerus C, Korf HW, Laedtke E, Weller JL, Klein DC. Selective adrenergic/cyclic AMP-dependent switch-off of proteasomal proteolysis alone switches on neural signal transduction: an example from the pineal gland. J Neurochem. 2000;75(5):2123–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors wish to thank Dr. Lijun Wang for help with animal care, and Ms Yaxi Chen for laboratory assistance, and Dr Michael Wang and Ms Soo Jung Lee for help with degu AANAT cloning. This work was support by grant NS057583 (to JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimo Borjigin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattoraj, A., Liu, T., Zhang, L.S. et al. Melatonin formation in mammals: In vivo perspectives. Rev Endocr Metab Disord 10, 237–243 (2009). https://doi.org/10.1007/s11154-009-9125-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-009-9125-5

Keywords

Navigation