Skip to main content

Advertisement

Log in

Modern techniques for pituitary radiotherapy

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Radiotherapy (RT) remains an effective treatment for residual or recurrent pituitary adenomas with excellent rates of tumour control and normalisation of excess hormone secretion. The main late toxicity is hypopituitarism: other side effects are rare. We discuss technical developments in the delivery of radiotherapy (stereotactic conformal radiotherapy (SCRT) and stereotactic radiosurgery (SRS)), all aiming to reduce the amount of normal brain receiving significant doses of radiation. We provide a comprehensive review of published data on outcome of conventional fractionated radiotherapy and modern RT techniques. SCRT is a suitable treatment technique for all sizes of pituitary adenoma and efficacy is comparable to conventional RT; the lack of long term follow up means that currently there is no information on potential reduction in the incidence of late radiation induced toxicity. Single fraction SRS can only be safely delivered to small tumours away from critical structures. There is no evidence that it produces faster decline of elevated hormone levels than fractionated treatment and is not associated with lesser morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grigsby PW, et al. Prognostic factors and results of surgery and postoperative irradiation in the management of pituitary adenomas. Int J Radiat Oncol Biol Phys 1989;16:1411–7.

    PubMed  CAS  Google Scholar 

  2. McCollough W, et al. Long term follow up of radiotherapy for pituitary adenoma: the absence of late recurrence after 4500 cGy. Int J Radiat Oncol Biol Phys 1991;21:607–14.

    PubMed  CAS  Google Scholar 

  3. Brada M, et al. The long term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol (Oxf) 1993;38 6:571–8.

    Article  CAS  Google Scholar 

  4. Tsang RW, et al. Radiation therapy for pituitary adenoma: treatment outcome and prognostic factors. Int J Radiat Oncol Biol Phys 1994;30 3:557–65.

    PubMed  CAS  Google Scholar 

  5. Zierhut D, et al. External radiotherapy of pituitary adenomas. Int J Radiat Oncol Biol Phys 1995;33 2:307–14.

    PubMed  CAS  Google Scholar 

  6. Rush S, Cooper PR. Symptom resolution, tumor control, and side effects following postoperative radiotherapy for pituitary macroadenomas. Int J Radiat Oncol Biol Phys 1997;37 5:1031–4.

    PubMed  CAS  Google Scholar 

  7. Breen P, et al. Radiotherapy for nonfunctional pituitary adenoma: analysis of long-term tumor control. J Neurosurg 1998;89 6:933–8.

    PubMed  CAS  Google Scholar 

  8. Gittoes NJ, et al. Radiotherapy for non-function pituitary tumours. Clin Endocrinol (Oxf) 1998;48 3:331–7.

    Article  CAS  Google Scholar 

  9. Sasaki R, et al. The efficacy of conventional radiation therapy in the management of pituitary adenoma. Int J Radiat Oncol Biol Phys 2000;47 5:1337–45.

    PubMed  CAS  Google Scholar 

  10. Barkan AL, et al. Pituitary irradiation is ineffective in normalizing plasma insulin-like growth factor I in patients with acromegaly [see comments]. J Clin Endocrinol Metab 1997;82 10:3187–91.

    Article  PubMed  CAS  Google Scholar 

  11. Cozzi R, et al. Failure of radiotherapy in acromegaly. Eur J Endocrinol 2001;145 6:717–26.

    Article  PubMed  CAS  Google Scholar 

  12. Ajithkumar T, Brada M. Stereotactic linear accelerator radiotherapy for pituitary tumors. Treat Endocrinol 2004;3 4:211–6.

    Article  PubMed  Google Scholar 

  13. Brada M, Ajithkumar TV, Minniti G. Radiosurgery for pituitary adenomas. Clin Endocrinol (Oxf) 2004;61 5:531–43.

    Article  CAS  Google Scholar 

  14. al Mefty O, et al. The long-term side effects of radiation therapy for benign brain tumors in adults [see comments]. J Neurosurg 1990;73 4:502–12.

    Article  PubMed  CAS  Google Scholar 

  15. Tsang RW, et al. Glioma arising after radiation therapy for pituitary adenoma. A report of four patients and estimation of risk [published erratum appears in Cancer 1994 Jan 15;73 2:492]. Cancer 1993;72 7:2227–33.

    Article  PubMed  CAS  Google Scholar 

  16. McCord MW, et al. Radiotherapy for pituitary adenoma: long-term outcome and sequelae. Int J Radiat Oncol Biol Phys 1997;39 2:437–44.

    PubMed  CAS  Google Scholar 

  17. Boelaert K, Gittoes NJ. Radiotherapy for non-functioning pituitary adenomas. Eur J Endocrinol 2001;144 6:569–75.

    Article  PubMed  CAS  Google Scholar 

  18. Brada M, et al. Cerebrovascular mortality in patients with pituitary adenoma. Clin Endocrinol (Oxf) 2002;57 6:713–7.

    Article  CAS  Google Scholar 

  19. Minniti G, et al. Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab 2005;90 2:800–4.

    Article  PubMed  CAS  Google Scholar 

  20. Gildersleve J, et al. Reproducibility of patient positioning during routine radiotherapy, as assessed by an integrated megavoltage imaging system. Radiother Oncol 1995;35 2:151–60.

    Article  PubMed  CAS  Google Scholar 

  21. Karger CP, et al. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system. Int J Radiat Oncol Biol Phys 2001;49 5:1493–504.

    PubMed  CAS  Google Scholar 

  22. Perks JR, et al. Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms. Int J Radiat Oncol Biol Phys 1999;45 2:507–13.

    PubMed  CAS  Google Scholar 

  23. Ajithkumar TV, et al. Optimisation of stereotactically-guided conformal radiotherapy of brain tumours based on normal brain dose volume histograms. Radiother Oncol 64:S83.

  24. Khoo VS, et al. Comparison of intensity-modulated tomotherapy with stereotactically guided conformal radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys 1999;45 2:415–25.

    PubMed  CAS  Google Scholar 

  25. Kumar S, et al. Treatment accuracy of fractionated stereotactic radiotherapy. Radiother Oncol 2005;74 1:53–9.

    Article  PubMed  Google Scholar 

  26. Yu C, et al. Dosimetric comparison of three photon radiosurgery techniques for an elongated ellipsoid target. Int J Radiat Oncol Biol Phys 1999;45 3:817–26.

    PubMed  CAS  Google Scholar 

  27. Tishler RB, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 1993;27 2:215–21.

    PubMed  CAS  Google Scholar 

  28. Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg 1998;88 1:43–50.

    PubMed  CAS  Google Scholar 

  29. Estrada J, et al. The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease [see comments]. N Engl J Med 1997;336 3:172–7.

    Article  PubMed  CAS  Google Scholar 

  30. Barrande G, et al. Hormonal and metabolic effects of radiotherapy in acromegaly: long-term results in 128 patients followed in a single center. J Clin Endocrinol Metab 2000;85 10:3779–85.

    Article  PubMed  CAS  Google Scholar 

  31. Biermasz NR, Dulken HV, Roelfsema F. Postoperative radiotherapy in acromegaly is effective in reducing GH concentration to safe levels. Clin Endocrinol (Oxf) 2000;53 3:321–7.

    Article  CAS  Google Scholar 

  32. Minniti G, et al. Long-term follow-up results of postoperative radiation therapy for Cushing’s disease. J Neurooncol 2007;84 1:79–84.

    Article  PubMed  Google Scholar 

  33. Langsenlehner T, et al. Long-term follow-up of patients with pituitary macroadenomas after postoperative radiation therapy: analysis of tumor control and functional outcome. Strahlenther Onkol 2007;183 5:241–7.

    Article  PubMed  Google Scholar 

  34. Epaminonda P, et al. Efficacy of radiotherapy in normalizing serum IGF-I, acid-labile subunit (ALS) and IGFBP-3 levels in acromegaly. Clin Endocrinol (Oxf) 2001;55 2:183–9.

    Article  CAS  Google Scholar 

  35. Minniti G, et al. The long-term efficacy of conventional radiotherapy in patients with GH-secreting pituitary adenomas. Clin Endocrinol (Oxf) 2005;62 2:210–6.

    Article  Google Scholar 

  36. Howlett TA, et al. Megavoltage pituitary irradiation in the management of Cushing’s disease and Nelson’s syndrome: long-term follow-up. Clin Endocrinol (Oxf) 1989;31 3:309–23.

    Article  CAS  Google Scholar 

  37. Littley MD, et al. Long-term follow-up of low-dose external pituitary irradiation for Cushing’s disease. Clin Endocrinol (Oxf) 1990;33 4:445–55.

    Article  CAS  Google Scholar 

  38. Tsagarakis S, et al. Megavoltage pituitary irradiation in the management of prolactinomas: long-term follow-up. Clin Endocrinol (Oxf) 1991;34 5:399–406.

    Article  CAS  Google Scholar 

  39. Johnston DG, et al. The long-term effects of megavoltage radiotherapy as sole or combined therapy for large prolactinomas: studies with high definition computerized tomography. Clin Endocrinol (Oxf) 1986;24 6:675–85.

    Article  CAS  Google Scholar 

  40. Mehta AE, Reyes FI, Faiman C. Primary radiotherapy of prolactinomas. Eight- to 15-year follow-up. Am J Med 1987;83 1:49–58.

    Article  PubMed  CAS  Google Scholar 

  41. Becker G, et al. Radiation therapy in the multimodal treatment approach of pituitary adenoma. Strahlenther Onkol 2002;178 4:173–86.

    Article  PubMed  Google Scholar 

  42. Brada M, et al. The incidence of cerebrovascular accidents in patients with pituitary adenoma. Int J Radiat Oncol Biol Phys 1999;45 3:693–8.

    PubMed  CAS  Google Scholar 

  43. Tomlinson JW, et al. Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 2001;357 9254:425–31.

    Article  PubMed  CAS  Google Scholar 

  44. Erfurth EM, et al. Risk factors for cerebrovascular deaths in patients operated and irradiated for pituitary tumors. J Clin Endocrinol Metab 2002;87 11:4892–9.

    Article  PubMed  CAS  Google Scholar 

  45. Tsang R, et al. Glioma arising after radiation therapy for pituitary adenoma: a report of four patients and estimation of risk. Cancer 1993;72:2227–33.

    Article  PubMed  CAS  Google Scholar 

  46. Brada M, et al. Risk of second brain tumour after conservative surgery and radiotherapy for pituitary adenoma. Br Med J 1992;304 6838:1343–6.

    Article  CAS  Google Scholar 

  47. Peace KA, et al. Cognitive dysfunction in patients with pituitary tumour who have been treated with transfrontal or transsphenoidal surgery or medication. Clin Endocrinol (Oxf) 1998;49 3:391–6.

    Article  CAS  Google Scholar 

  48. Guinan EM, et al. Cognitive effects of pituitary tumours and their treatments: two case studies and an investigation of 90 patients. J Neurol Neurosurg Psychiatry 1998;65 6:870–6.

    Article  PubMed  CAS  Google Scholar 

  49. Martinez R, et al. Pituitary tumors and gamma knife surgery. Clinical experience with more than two years of follow-up. Stereotact Funct Neurosurg 1998;70 Suppl 1:110–8.

    Article  PubMed  Google Scholar 

  50. Pan L, et al. Pituitary adenomas: the effect of gamma knife radiosurgery on tumor growth and endocrinopathies. Stereotact Funct Neurosurg 1998;70 Suppl 1:119–26.

    Article  PubMed  Google Scholar 

  51. Ikeda H, Jokura H, Yoshimoto T. Gamma knife radiosurgery for pituitary adenomas: usefulness of combined transsphenoidal and gamma knife radiosurgery for adenomas invading the cavernous sinus. Radiat Oncol Investig 1998;6 1:26–34.

    Article  PubMed  CAS  Google Scholar 

  52. Mokry M, et al. A six year experience with the postoperative radiosurgical management of pituitary adenomas. Stereotact Funct Neurosurg 1999;72 Suppl 1:88–100.

    Article  PubMed  Google Scholar 

  53. Hayashi M, et al. Gamma Knife radiosurgery for pituitary adenomas. Stereotact Funct Neurosurg 1999;72 Suppl 1:111–8.

    Article  PubMed  Google Scholar 

  54. Izawa M, et al. Gamma knife radiosurgery for pituitary adenomas. J Neurosurg 2000;93 Suppl 3:19–22.

    PubMed  Google Scholar 

  55. Wowra B, Stummer W. Efficacy of gamma knife radiosurgery for nonfunctioning pituitary adenomas: a quantitative follow up with magnetic resonance imaging-based volumetric analysis. J Neurosurg 2002;97 5 Suppl:429–32.

    PubMed  Google Scholar 

  56. Sheehan JP, et al. Radiosurgery for residual or recurrent nonfunctioning pituitary adenoma. J Neurosurg 2002;97 5 Suppl:408–14.

    PubMed  Google Scholar 

  57. Petrovich Z, et al. Gamma knife radiosurgery for pituitary adenoma: early results. Neurosurgery 2003;53 1:51–9. discussion 59–61.

    Article  PubMed  Google Scholar 

  58. Pollock BE, Carpenter PC. Stereotactic radiosurgery as an alternative to fractionated radiotherapy for patients with recurrent or residual nonfunctioning pituitary adenomas. Neurosurgery 2003;53 5:1086–91. discussion 1091–4.

    Article  PubMed  Google Scholar 

  59. Losa M, et al. Gamma knife surgery for treatment of residual nonfunctioning pituitary adenomas after surgical debulking. J Neurosurg 2004;100 3:438–44.

    Article  PubMed  Google Scholar 

  60. Iwai Y, Yamanaka K, Yoshioka K. Radiosurgery for nonfunctioning pituitary adenomas. Neurosurgery 2005;56 4:699–705. discussion 699–705.

    Article  PubMed  Google Scholar 

  61. Liscak R, et al. Gamma knife radiosurgery for endocrine-inactive pituitary adenomas. Acta Neurochir (Wien) 2007;149 10:999–1006. discussion 1006.

    Article  CAS  Google Scholar 

  62. Pollock BE, et al. Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol Biol Phys 2008;70 5:1325–9.

    PubMed  Google Scholar 

  63. Mingione V, et al. Gamma surgery in the treatment of nonsecretory pituitary macroadenoma. J Neurosurg 2006;104 6:876–83.

    Article  PubMed  Google Scholar 

  64. Thoren M, et al. Stereotactic radiosurgery with the cobalt-60 gamma unit in the treatment of growth hormone-producing pituitary tumors. Neurosurgery 1991;29 5:663–8.

    Article  PubMed  CAS  Google Scholar 

  65. Morange-Ramos I, et al. Short-term endocrinological results after gamma knife surgery of pituitary adenomas. Stereotact Funct Neurosurg 1998;70 Suppl 1:127–38.

    Article  PubMed  Google Scholar 

  66. Lim YL, et al. Four years’ experiences in the treatment of pituitary adenomas with gamma knife radiosurgery. Stereotact Funct Neurosurg 1998;70 Suppl 1:95–109.

    Article  PubMed  Google Scholar 

  67. Kim MS, Lee SI, Sim JH. Gamma Knife radiosurgery for functioning pituitary microadenoma. Stereotact Funct Neurosurg 1999;72 Suppl 1:119–24.

    Article  PubMed  Google Scholar 

  68. Landolt AM, et al. Stereotactic radiosurgery for recurrent surgically treated acromegaly: comparison with fractionated radiotherapy. J Neurosurg 1998;88 6:1002–8.

    Article  PubMed  CAS  Google Scholar 

  69. Inoue HK, et al. Pituitary adenomas treated by microsurgery with or without Gamma Knife surgery: experience in 122 cases. Stereotact Funct Neurosurg 1999;72 Suppl 1:125–31.

    Article  PubMed  Google Scholar 

  70. Zhang N, et al. Radiosurgery for growth hormone-producing pituitary adenomas. J Neurosurg 2000;93 Suppl 3:6–9.

    PubMed  Google Scholar 

  71. Pollock BE, et al. Results of stereotactic radiosurgery in patients with hormone-producing pituitary adenomas: factors associated with endocrine normalization. J Neurosurg 2002;97 3:525–30.

    Article  PubMed  Google Scholar 

  72. Attanasio R, et al. Gamma-knife radiosurgery in acromegaly: a 4-year follow-up study. J Clin Endocrinol Metab 2003;88 7:3105–12.

    Article  PubMed  CAS  Google Scholar 

  73. Choi JY, et al. Radiological and hormonal responses of functioning pituitary adenomas after gamma knife radiosurgery. Yonsei Med J 2003;44 4:602–7.

    PubMed  Google Scholar 

  74. Jane JA Jr, Laws ER Jr. The management of non-functioning pituitary adenomas. Neurol India 2003;51 4:461–5.

    PubMed  Google Scholar 

  75. Castinetti F, et al. Outcome of gamma knife radiosurgery in 82 patients with acromegaly: correlation with initial hypersecretion. J Clin Endocrinol Metab 2005;90 8:4483–8.

    Article  PubMed  CAS  Google Scholar 

  76. Gutt B, et al. Gamma-knife surgery is effective in normalising plasma insulin-like growth factor I in patients with acromegaly. Exp Clin Endocrinol Diabetes 2005;113 4:219–24.

    Article  PubMed  CAS  Google Scholar 

  77. Kobayashi T, et al. Long-term results of gamma knife surgery for growth hormone-producing pituitary adenoma: is the disease difficult to cure? J Neurosurg 2005;102 Suppl:119–23.

    Article  PubMed  Google Scholar 

  78. Jezkova J, et al. Gamma knife radiosurgery for acromegaly—long-term experience. Clin Endocrinol (Oxf) 2006;64 5:588–95.

    Article  Google Scholar 

  79. Pollock BE, et al. Radiosurgery of growth hormone-producing pituitary adenomas: factors associated with biochemical remission. J Neurosurg 2007;106 5:833–8.

    Article  PubMed  CAS  Google Scholar 

  80. Degerblad M, et al. Long term results of stereotactic radiosurgery to the pituitary gland in Cushing’s disease. Acta Endocrinol (Copenh) 1986;112 3:310–4.

    CAS  Google Scholar 

  81. Ganz JC, Backlund EO, Thorsen FA. The effects of Gamma Knife surgery of pituitary adenomas on tumor growth and endocrinopathies. Stereotact Funct Neurosurg 1993;61 Suppl 1:30–7.

    PubMed  Google Scholar 

  82. Seo Y, et al. Gamma knife surgery for Cushing’s disease. Surg Neurol 1995;43 2:170–5. discussion 175–6.

    Article  PubMed  CAS  Google Scholar 

  83. Sheehan JM, et al. Radiosurgery for Cushing’s disease after failed transsphenoidal surgery. J Neurosurg 2000;93 5:738–42.

    Article  PubMed  CAS  Google Scholar 

  84. Hoybye C, et al. Adrenocorticotropic hormone-producing pituitary tumors: 12- to 22-year follow-up after treatment with stereotactic radiosurgery. Neurosurgery 2001;49 2:284–91. discussion 291–2.

    Article  PubMed  CAS  Google Scholar 

  85. Kobayashi T, Kida Y, Mori Y. Gamma knife radiosurgery in the treatment of Cushing disease: long-term results. J Neurosurg 2002;97 5 Suppl:422–8.

    PubMed  Google Scholar 

  86. Devin JK, et al. The efficacy of linear accelerator radiosurgery in the management of patients with Cushing’s disease. Stereotact Funct Neurosurg 2004;82 5–6:254–62.

    Article  PubMed  Google Scholar 

  87. Castinetti F, et al. Gamma knife radiosurgery is a successful adjunctive treatment in Cushing’s disease. Eur J Endocrinol 2007;156 1:91–8.

    Article  PubMed  CAS  Google Scholar 

  88. Jagannathan J, et al. Gamma Knife surgery for Cushing’s disease. J Neurosurg 2007;106 6:980–7.

    Article  PubMed  Google Scholar 

  89. Landolt AM, Lomax N. Gamma knife radiosurgery for prolactinomas. J Neurosurg 2000;93 Suppl 3:14–8.

    PubMed  Google Scholar 

  90. Pouratian N, et al. Gamma knife radiosurgery for medically and surgically refractory prolactinomas. Neurosurgery 2006;59 2:255–66. discussion 255–66.

    Article  PubMed  Google Scholar 

  91. Pan L, et al. Gamma knife radiosurgery as a primary treatment for prolactinomas. J Neurosurg 2000;93 Suppl 3:10–3.

    PubMed  Google Scholar 

  92. Voges J, et al. LINAC-radiosurgery (LINAC-RS) in pituitary adenomas: preliminary results. Acta Neurochir Suppl (Wien) 1996;65:41–3.

    CAS  Google Scholar 

  93. Yoon SC, et al. Clinical results of 24 pituitary macroadenomas with linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1998;41 4:849–53.

    PubMed  CAS  Google Scholar 

  94. Mitsumori M, et al. Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys 1998;42 3:573–80.

    PubMed  CAS  Google Scholar 

  95. Coke C, et al. Multiple fractionated stereotactic radiotherapy of residual pituitary macroadenomas: initial experience. Stereotact Funct Neurosurg 1997;69 1–4 Pt 2:183–90.

    Article  PubMed  CAS  Google Scholar 

  96. Milker-Zabel S, et al. Fractionated stereotactically guided radiotherapy and radiosurgery in the treatment of functional and nonfunctional adenomas of the pituitary gland. Int J Radiat Oncol Biol Phys 2001;50 5:1279–86.

    PubMed  CAS  Google Scholar 

  97. Paek SH, et al. Integration of surgery with fractionated stereotactic radiotherapy for treatment of nonfunctioning pituitary macroadenomas. Int J Radiat Oncol Biol Phys 2005;61 3:795–808.

    PubMed  Google Scholar 

  98. Colin P, et al. Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys 2005;62 2:333–41.

    PubMed  Google Scholar 

  99. Minniti G, et al. Fractionated stereotactic conformal radiotherapy for secreting and nonsecreting pituitary adenomas. Clin Endocrinol (Oxf) 2006;64 5:542–8.

    Article  CAS  Google Scholar 

  100. Selch MT, et al. Stereotactic radiotherapy for the treatment of pituitary adenomas. Minim Invasive Neurosurg 2006;49 3:150–5.

    Article  PubMed  CAS  Google Scholar 

  101. Kong DS, et al. The efficacy of fractionated radiotherapy and stereotactic radiosurgery for pituitary adenomas: long-term results of 125 consecutive patients treated in a single institution. Cancer 2007;110 4:854–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work in this study was supported in part by the Neuro-oncology Research Fund of The Royal Marsden NHS Trust. The Neuro-oncology Unit also received funding from Cancer Research UK and The Royal Marsden NHS Foundation Trust. UK hospitals receive a proportion of their funding from the NHS Executive; the views expressed are those of the authors and not necessarily those of the NHS Executive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minniti, G., Gilbert, D.C. & Brada, M. Modern techniques for pituitary radiotherapy. Rev Endocr Metab Disord 10, 135–144 (2009). https://doi.org/10.1007/s11154-008-9106-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9106-0

Keywords

Navigation