Skip to main content

Advertisement

Log in

Non-traditional metabolic pathways of adrenal steroids

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Metabolic pathways are reconstructed from biochemical evidence to conceptualize the predominant route to important biomolecules. Pathways have heuristic value in their capacity to explain the metabolic derangements in genetic diseases of enzyme deficiencies and during pharmacologic inhibition of these enzymes. Implicit in the description of these pathways is the potential existence of alternate routes, variable order of reactions, and the inevitable by-products generated by incomplete efficiencies and competing enzymes. This chapter will consider alternate fates encountered by steroid hormone precursors in the adrenal gland, the variables influencing flux through these secondary pathways, and the significance of these diversions in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bruchovsky N, Wilson JD. Discovery of the role of dihydrotestosterone in androgen action. Steroids. 1999;64:753–9. doi:10.1016/S0039-128X(99)00054-9.

    Article  PubMed  CAS  Google Scholar 

  2. Bruchovsky N, Wilson JD. The intranuclear binding of testosterone and 5α-androstan-17β-ol-3-one by rat prostate. J Biol Chem. 1968;243:5953–60.

    PubMed  CAS  Google Scholar 

  3. Moore RJ, Wilson JD. Steroid 5α-reductase in cultured human fibroblasts. Biochemical and genetic evidence for two distinct enzyme activities. J Biol Chem. 1976;251:5895–900.

    PubMed  CAS  Google Scholar 

  4. Andersson S, Berman DM, Jenkins EP, Russell DW. Deletion of a steroid 5α-reductase 2 gene in male pseudohermaphroditism. Nature. 1991;354:159–61. doi:10.1038/354159a0.

    Article  PubMed  CAS  Google Scholar 

  5. Chase DJ, Payne AH. Changes in Leydig cell function during sexual maturation in the mouse. Biol Reprod. 1983;29:1194–200. doi:10.1095/biolreprod29.5.1194.

    Article  PubMed  CAS  Google Scholar 

  6. Sheffield JW, O’Shaughnessy PJ. Testicular steroid metabolism during development in the normal and hypogonadal mouse. J Endocrinol. 1988;119:257–64.

    Article  PubMed  CAS  Google Scholar 

  7. Ge RS, Hardy MP. Variation in the end products of androgen biosynthesis and metabolism during postnatal differentiation of rat Leydig cells. Endocrinology. 1998;139:3787–95. doi:10.1210/en.139.9.3787.

    Article  PubMed  CAS  Google Scholar 

  8. Ge RS, Hardy DO, Catterall JF, Hardy MP. Opposing changes in 3α-hydroxysteroid dehydrogenase oxidative and reductive activities in rat leydig cells during pubertal development. Biol Reprod. 1999;60:855–60. doi:10.1095/biolreprod60.4.855.

    Article  PubMed  CAS  Google Scholar 

  9. Frungieri MB, Gonzalez-Calvar SI, Bartke A, Calandra RS. Influence of age and photoperiod on steroidogenic function of the testis in the golden hamster. Int J Androl. 1999;22:243–52. doi:10.1046/j.1365-2605.1999.00175.x.

    Article  PubMed  CAS  Google Scholar 

  10. Risbriger GP, Davies A. Isolation of rat Leydig cells and precursor forms after administration of ethane dimethane sulfonate. Am J Physiol. 1994;266:E975–979.

    Google Scholar 

  11. Carmichael R, Belanger A, Cusan L, Seguin C, Caron S, Labrie F. Increased testicular 5α-androstane-3α,17β-diol formation induced by treatment with [D-Ser (TBU) 6, des-Gly-NH2(10)] LHRH ethylamide in the rat. Steroids. 1980;36:383–91. doi:10.1016/0039-128X(80)90027-6.

    Article  PubMed  CAS  Google Scholar 

  12. Moger WH. Serum 5α-androstane-3α,17β-diol, androsterone, and testosterone concentrations in the male rat. Influence of age and gonadotropin stimulation. Endocrinology 1977;100:1027–32.

    PubMed  CAS  Google Scholar 

  13. Mahendroo MS, Wilson JD, Richardson JA, Auchus RJ. Steroid 5α-reductase 1 promotes 5α-androstane-3α,17β-diol synthesis in immature mouse testes by two pathways. Mol Cell Endocrinol. 2004;222:113–20. doi:10.1016/j.mce.2004.04.009.

    Article  PubMed  CAS  Google Scholar 

  14. Shaw G, Renfree MB, Leihy MW, Shackleton CH, Roitman E, Wilson JD. Prostate formation in a marsupial is mediated by the testicular androgen 5α-androstane-3α,17β-diol. Proc Natl Acad Sci U S A. 2000;97:12256–9. doi:10.1073/pnas.220412297.

    Article  PubMed  CAS  Google Scholar 

  15. Eckstein B, Borut A, Cohen S. Metabolic pathways for androstanediol formation in immature rat testis microsomes. Biochim Biophys Acta. 1987;924:1–6.

    PubMed  CAS  Google Scholar 

  16. Wilson JD, Auchus RJ, Leihy MW, Guryev OL, Estabrook RW, Osborn SM, et al. 5α-androstane-3α,17β-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3α,17α-diol-20-one as a key intermediate. Endocrinology. 2003;144:575–80. doi:10.1210/en.2002-220721.

    Article  PubMed  CAS  Google Scholar 

  17. Frederiksen DW, Wilson JD. Partial characterization of the nuclear reduced nicotinamide adenine dinucleotide phosphate: Δ 4–3-ketosteroid 5 α-oxidoreductase of rat prostate. J Biol Chem 1971;246:2584–93.

    PubMed  CAS  Google Scholar 

  18. Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, et al. Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J. 2000;351:67–77. doi:10.1042/0264-6021:3510067.

    Article  PubMed  CAS  Google Scholar 

  19. Auchus RJ, Lee TC, Miller WL. Cytochrome b 5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer. J Biol Chem. 1998;273:3158–65. doi:10.1074/jbc.273.6.3158.

    Article  PubMed  CAS  Google Scholar 

  20. Gupta MK, Guryev OL, Auchus RJ. 5α-reduced C21 steroids are substrates for human cytochrome P450c17. Arch Biochem Biophys. 2003;418:151–60. doi:10.1016/j.abb.2003.07.003.

    Article  PubMed  CAS  Google Scholar 

  21. Backstrom T, Andersson A, Baird DT, Selstam G. The human corpus luteum secretes 5α-pregnane-3,20-dione. Acta Endocrinol (Copenh). 1986;111:116–21.

    CAS  Google Scholar 

  22. Milewich L, Mendonca BB, Arnhold I, Wallace AM, Donaldson MD, Wilson JD, et al. Women with steroid 5α-reductase 2 deficiency have normal concentrations of plasma 5α-dihydroprogesterone during the luteal phase. J Clin Endocrinol Metab. 1995;80:3136–9. doi:10.1210/jc.80.11.3136.

    Article  PubMed  CAS  Google Scholar 

  23. Yokoi H, Tsuruo Y, Miyamoto T, Ishimura K. Steroid 5α-reductase type 1 immunolocalized in the adrenal gland of normal, gonadectomized, and sex hormone-supplemented rats. Histochem Cell Biol. 1998;109:127–34. doi:10.1007/s004180050210.

    Article  PubMed  CAS  Google Scholar 

  24. Hanley NA, Arlt W. The human fetal adrenal cortex and the window of sexual differentiation. Trends Endocrinol Metab. 2006;17:391–7. doi:10.1016/j.tem.2006.10.001.

    Article  PubMed  CAS  Google Scholar 

  25. Peterson RE, Imperato-McGinley J, Gautier T, Shackleton C. Male pseudohermaphroditism due to multiple defects in steroid-biosynthetic microsomal mixed-function oxidases. A new variant of congenital adrenal hyperplasia. N Engl J Med. 1985;313:1182–91.

    PubMed  CAS  Google Scholar 

  26. Flück CE, Tajima T, Pandey AV, Arlt W, Okuhara K, Verge CF, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004;36:228–30. doi:10.1038/ng1300.

    Article  PubMed  CAS  Google Scholar 

  27. Arlt W, Walker EA, Draper N, Ivison HE, Ride JP, Hammer F, et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet. 2004;363:2128–35. doi:10.1016/S0140-6736(04)16503-3.

    Article  PubMed  CAS  Google Scholar 

  28. Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley–Bixler syndrome and disordered steroidogenesis. Am J Hum Genet. 2005;76:729–49. doi:10.1086/429417.

    Article  PubMed  CAS  Google Scholar 

  29. Yanagibashi K, Hall PF. Role of electron transport in the regulation of the lyase activity of C-21 side-chain cleavage P450 from porcine adrenal and testicular microsomes. J Biol Chem 1986;261:8429–33.

    PubMed  CAS  Google Scholar 

  30. Geller DH, Auchus RJ, Mendonça BB, Miller WL. The genetic and functional basis of isolated 17,20 lyase deficiency. Nat Genet. 1997;17:201–5. doi:10.1038/ng1097-201.

    Article  PubMed  CAS  Google Scholar 

  31. Auchus RJ, Miller WL. Molecular modeling of human P450c17 (17α-hydroxylase/17,20-lyase): Insights into reaction mechanisms and effects of mutations. Mol Endocrinol. 1999;13:1169–82. doi:10.1210/me.13.7.1169.

    Article  PubMed  CAS  Google Scholar 

  32. Shackleton C, Malunowicz E. Apparent pregnene hydroxylation deficiency (APHD): seeking the parentage of an orphan metabolome. Steroids. 2003;68:707–17. doi:10.1016/S0039-128X(03)00115-6.

    Article  PubMed  CAS  Google Scholar 

  33. Shackleton C, Marcos J, Arlt W, Hauffa BP. Prenatal diagnosis of P450 oxidoreductase deficiency (ORD): A disorder causing low pregnancy estriol, maternal and fetal virilization, and the Antley-Bixler syndrome phenotype. Am J Med Genet A. 2004;129:105–12. doi:10.1002/ajmg.a.30171.

    Article  Google Scholar 

  34. Homma K, Hasegawa T, Nagai T, Adachi M, Horikawa R, Fujiwara I, et al. Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone. J Clin Endocrinol Metab. 2006;91:2643–9. doi:10.1210/jc.2005-2460.

    Article  PubMed  CAS  Google Scholar 

  35. Ehrmann DA, Rosenfield RL, Barnes RB, Brigell DF, Sheikh Z. Detection of functional ovarian hyperandrogenism in women with androgen excess. N Engl J Med. 1992;327:157–62.

    PubMed  CAS  Google Scholar 

  36. Rosenfield RL, Barnes RB, Ehrmann DA. Studies of the nature of 17-hydroxyprogesterone hyperresonsiveness to gonadotropin-releasing hormone agonist challenge in functional ovarian hyperandrogenism. J Clin Endocrinol Metab. 1994;79:1686–92. doi:10.1210/jc.79.6.1686.

    Article  PubMed  CAS  Google Scholar 

  37. Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17α activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med. 1996;335:617–23. doi:10.1056/NEJM199608293350902.

    Article  PubMed  CAS  Google Scholar 

  38. Fassnacht M, Schlenz N, Schneider SB, Wudy SA, Allolio B, Arlt W. Beyond adrenal and ovarian androgen generation: Increased peripheral 5α-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:2760–6. doi:10.1210/jc.2002-021875.

    Article  PubMed  CAS  Google Scholar 

  39. Kumar A, Woods KS, Bartolucci AA, Azziz R. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf). 2005;62:644–9. doi:10.1111/j.1365-2265.2005.02256.x.

    Article  CAS  Google Scholar 

  40. Thompson DL, Horton N, Rittmaster RS. Androsterone glucuronide is a marker of adrenal hyperandrogenism in hirsute women. Clin Endocrinol (Oxf). 1990;32:283–92. doi:10.1111/j.1365-2265.1990.tb00868.x.

    Article  CAS  Google Scholar 

  41. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev. 2000;21:245–91. doi:10.1210/er.21.3.245.

    Article  PubMed  CAS  Google Scholar 

  42. Whorwood CB, Ueshiba H, del Blazo P. Plasma levels of C19 steroid glucuronides in pre-menopausal women with non-classical congenital adrenal hyperplasia. J Steroid Biochem Mol Biol. 1992;42:211–21. doi:10.1016/0960-0760(92)90030-M.

    Article  PubMed  CAS  Google Scholar 

  43. Baulieu EE. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res. 1997;52:1–32.

    PubMed  CAS  Google Scholar 

  44. Rupprecht R, Hauser CA, Trapp T, Holsboer F. Neurosteroids: molecular mechanisms of action and psychopharmacological significance. J Steroid Biochem Mol Biol. 1996;56:163–8. doi:10.1016/0960-0760(95)00233-2.

    Article  PubMed  CAS  Google Scholar 

  45. Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A. 1999;96:13512–7. doi:10.1073/pnas.96.23.13512.

    Article  PubMed  CAS  Google Scholar 

  46. Genazzani AR, Pluchino N, Begliuomini S, Stomati M, Bernardi F, Pieri M, et al. Long-term low-dose oral administration of dehydroepiandrosterone modulates adrenal response to adrenocorticotropic hormone in early and late postmenopausal women. Gynecol Endocrinol. 2006;22:627–35. doi:10.1080/09513590601024681.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant I-1493 from the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Auchus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auchus, R.J. Non-traditional metabolic pathways of adrenal steroids. Rev Endocr Metab Disord 10, 27–32 (2009). https://doi.org/10.1007/s11154-008-9095-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9095-z

Keywords

Navigation