Skip to main content
Log in

Potential role of type I interferons in the treatment of pituitary adenomas

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Cytokines, particularly those endowed with pro-inflammatory properties, are known to influence the release of anterior pituitary hormones by a direct and indirect action at the level of pituitary gland and hypothalamus. Type I interferons (IFNs) represent a group of cytokines that act through a common receptor composed by two chains (IFNAR-1 and IFNAR-2). Several in vitro and in vivo studies underline the fact that type I IFNs are involved in the regulation of the immune-endocrine circuitry. Treatment with type I IFNs of patients affected by chronic viral hepatitis, multiple sclerosis and tumors influences the secretion of pituitary hormones. This article reviews the current knowledge about the effects of IFN-α and IFN-β on hypothalamic–pituitary function and describes the potential role of type I IFNs in the treatment of pituitary adenomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pestka S. Interferons, interferon-like cytokines and their receptors. Immunol Rev. 2004;202:8–32.

    Article  PubMed  CAS  Google Scholar 

  2. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–90.

    Article  PubMed  CAS  Google Scholar 

  3. Bekisz J, Schmeisser H, Hernandez J, Goldman ND, Zoon KC. Human interferons alpha, beta and omega. Growth Factors. 2004;22:243–51.

    Article  PubMed  CAS  Google Scholar 

  4. De Maeyer E, De Maeyer-Guignard J. Type I interferons. Int Rev Immunol. 1998;17:53–73.

    PubMed  Google Scholar 

  5. Pestka S. The interferon receptors. Semin Oncol. 1997;24:S9–18–S9-40.

    Google Scholar 

  6. Domanski P, Witte M, Kellum M, Rubinstein M, Hackett R, Pitha P, et al. Cloning and expression of a long form of the beta subunit of the interferon alpha beta receptor that is required for signaling. J Biol Chem. 1995;270:21606–11.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen B, Novick D, Barak S, Rubinstein M. Ligand-induced association of the type I interferon receptor components. Mol Cell Biol. 1995;15:4208–14.

    PubMed  CAS  Google Scholar 

  8. Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995;64:621–51.

    Article  PubMed  CAS  Google Scholar 

  9. Ihle JN. STATs: signal transducers and activators of transcription. Cell 1996;84:331–34.

    Article  PubMed  CAS  Google Scholar 

  10. Darnell JE Jr. STATs and gene regulation. Science 1997;277:1630–5.

    Article  PubMed  CAS  Google Scholar 

  11. Imada K, Leonard WJ. The Jak–STAT pathway. Mol Immunol. 2000;37:1–11.

    Article  PubMed  CAS  Google Scholar 

  12. Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev. 2000;11:199–207.

    Article  PubMed  CAS  Google Scholar 

  13. Darnell JE, Kerr IM, Stark GR. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994;264:1415–21.

    Article  PubMed  CAS  Google Scholar 

  14. Meinke A, Barahmand-Pour F, Wohrl S, Stoiber D, Decker T. Activation of different Stat5 isoforms contributes to cell type-restricted signaling in response to interferons. Mol Cell Biol. 1996;16:6937–45.

    PubMed  CAS  Google Scholar 

  15. Janick PK. Binding of human alpha-interferon in the brain tissue membranes of rat. Res Commun Chem Pathol Pharmacol. 1992;75:117–20.

    Google Scholar 

  16. Khan NUD, Pulford KAF, Farquharson MA, Howatson A, Stewart C, Jackson R, et al. The distribution of immunoreactive interferon-alpha in normal human tissues. Immunology 1989;66:201–6.

    PubMed  CAS  Google Scholar 

  17. Gisslinger H, Svoboda T, Clodi M, Gilly B, Ludwig H, Havelec L, et al. Interferon-alpha stimulates the hypothalamic–pituitary–adrenal axis in vivo and in vitro. Neuroendocrinology 1993;57:489–95.

    Article  PubMed  CAS  Google Scholar 

  18. Raber J, Koob GF, Bloom FE. Interferon-alpha and transforming growth factor-beta 1 regulate corticotropin-releasing factor release from the amygdala: comparison with the hypothalamic response. Neurochem Int. 1997;30:455–63.

    Article  PubMed  CAS  Google Scholar 

  19. Felger JC, Alagbe O, Hu F, Mook D, Freeman AA, Sanchez MM, et al. Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol Psychiatry. 2007;62:1324–33.

    Article  PubMed  CAS  Google Scholar 

  20. Dafny N, Yang PB. Interferon and central nervous system. Eur J Pharmacol. 2005;523:1–15.

    Article  PubMed  CAS  Google Scholar 

  21. Corssmit EP, Heijligenberg R, Endert E, Ackermans MT, Saverwein HP, Romijn JA. Endocrine and metabolic effects of interferon-alpha in humans. J Clin Endocrinol Metab. 1996;81:3265–9.

    Article  PubMed  CAS  Google Scholar 

  22. Goebel MU, Baase J, Pithan V, Exton M, Saller B, Schedlowski M, et al. Acute interferon b-1b administration alters hypothalamic–pituitary–adrenal axis activity, plasma cytokines and leukocyte distribution in healthy subjects. Psychoneuroendocrinology 2002;27:881–92.

    Article  PubMed  CAS  Google Scholar 

  23. Ohno Y, Fujimoto M, Nishimura A, Aoki N. Change of peripheral levels of pituitary hormones and cytokines after injection of interferon (IFN)-b in patients with chronic hepatitis C. J Clin Endocrinol Metab. 1998;83:3681–7.

    Article  PubMed  CAS  Google Scholar 

  24. Barbarino A, Colasanti S, Corsello SM, Satta M, Della Casa S, Rota CA, et al. Dexamethasone inhibition of interferon-alpha 2-induced stimulation of cortisol and growth hormone secretion in chronic myeloproliferative syndrome. J Clin Endocrinol Metab. 1995;80:1329–32.

    Article  PubMed  CAS  Google Scholar 

  25. Asnis GM, De La Garza R II. Interferon-induced depression in chronic hepatitis C: a review of its prevalence, risk factors, biology, and treatment approaches. J Clin Gastroenterol. 2006;40:322–35.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor JL, Grossberg SE. The effects of interferon-alpha on the production and action of other cytokines. Semin Oncol. 1998;25(Suppl 1):23–9.

    PubMed  CAS  Google Scholar 

  27. Shimizu H, Ohtani K, Sato N, Nagamine T, Mori M. Increase in serum interleukin-6, plasma ACTH and serum cortisol levels after systemic interferon-alpha administration. Endocr J. 1995;42:551–6.

    Article  PubMed  CAS  Google Scholar 

  28. Wichers MC, Kenis G, Koek GH, Robaeys G, Nicolson NA, Maes M. Interferon-a-induced depressive symptoms are related to changes in the cytokine network but not to cortisol. J Psychosom Res. 2007;62:207–14.

    Article  PubMed  Google Scholar 

  29. John CD, Buckingham JC. Cytokines: regulation of the hypothalamopituitary–adrenocortical axis. Curr Opin Pharmacol. 2003;3:78–84.

    Article  PubMed  CAS  Google Scholar 

  30. Turnbull AV, Rivier CL. Regulation of the hypothalamic–pituitary adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev. 1999;79:1–71.

    PubMed  CAS  Google Scholar 

  31. Ericsson A, Kovacs KJ, Sawchenko PE. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci. 1994;14:897–913.

    PubMed  CAS  Google Scholar 

  32. Buller KM, Xu Y, Day TA. Indomethacin attenuates oxytocin and hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1b. J Neuroendocrinol. 1998;10:519–28.

    Article  PubMed  CAS  Google Scholar 

  33. Lacroix S, Rivest S. Functional circuitry in the brain of immune-challenged rats: partial involvement of prostaglandins. J Comp Neurol. 1997;387:307–24.

    Article  PubMed  CAS  Google Scholar 

  34. Bergh FT, Kümpfel T, Yassouridis A, Lechner C, Holsboer F, Trenkwalder C. Acute and chronic neuroendocrine effects of interferon-b1a in multiple sclerosis. Clin Endocrinol. 2007;66:295–303.

    Article  CAS  Google Scholar 

  35. Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH. Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am J Psychiatry. 2003;160:1342–5.

    Article  PubMed  Google Scholar 

  36. Romanowski W, Braczkowski R, Kosiewicz J, Korzonek I, Nowakowska-Zajdel E, Muc-Wierzgon M, et al. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alfa administration. Endokrynol Pol. 2006;57:482–6.

    PubMed  Google Scholar 

  37. Plockinger U, Kruger D, Bergk A, Weich V, Wiedenmann B, Berg T. Hepatitis-C patients have reduced growth hormone (GH) secretion which improves during long-term therapy with pegylated interferon-a. Am J Gastroenterol. 2007;102:2724–31.

    Article  PubMed  CAS  Google Scholar 

  38. Stjernholm MR, Alsever RN, Beck P. Growth hormone release after synthetic 1-24 ACTH: effects of estrogen and sex. J Clin Endocrinol Metab. 1975;40:516–8.

    PubMed  CAS  Google Scholar 

  39. Casanueva FF, Burguera B, Tome MA, Lima L, Tresguerres JA, Devesa J, et al. Depending on the time of administration, dexamethasone potentiates or blocks growth hormone-releasing hormone-induced growth hormone release in man. Neuroendocrinology 1988;47:46–9.

    Article  PubMed  CAS  Google Scholar 

  40. Muller H, Hiemke C, Hammes E, Hess G. Sub-acute effects of interferon-alpha 2 on adrenocorticotrophic hormone, cortisol, growth hormone and prolactin in humans. Psychoneuroendocrinology 1992;17:459–65.

    Article  PubMed  CAS  Google Scholar 

  41. Baudin E, Marcellin P, Pouteau M, Colas-Linhart N, Le Floch JP, Lemmonier C, et al. Reversibility of thyroid dysfunction induced by recombinant alpha interferon in chronic hepatitis C. Clin Endocrinol (Oxf). 1993;39:657–61.

    Article  CAS  Google Scholar 

  42. Mazziotti G, Sorvillo F, Stornaiuolo G, Rotondi M, Morisco F, Ruberto M, et al. Temporal relationship between the appearance of thyroid autoantibodies and development of destructive thyroiditis in patients undergoing treatment with two different type-1 interferons for HCV-related chronic hepatitis: a prospective study. J Endocrinol Invest. 2002;25:624–30.

    PubMed  CAS  Google Scholar 

  43. Lisker-Melman M, Di Bisceglie AM, Usala SJ, Weintraub B, Murray LM, Hoofnagle H. Development of thyroid disease during therapy of chronic viral hepatitis with interferon alfa. Gastroenterology 1992;102:2155–60.

    PubMed  CAS  Google Scholar 

  44. Carella C, Mazziotti G, Amato G, Braverman LE, Roti E. Interferon-a-related thyroid disease: pathophysiological, epidemiological, and clinical aspects. J Clin Endocrinol Metab. 2004;89:3656–61.

    Article  PubMed  CAS  Google Scholar 

  45. Caraccio N, Dardano A, Manfredonia F, Manca L, Pasquali L, Iudice A, et al. Long-term follow-up of 106 multiple sclerosis patients undergoing interferon-beta 1a and 1b therapy: predictive factors of thyroid disease development and duration. J Clin Endocrinol Metab. 2005;90:4133–7.

    Article  PubMed  CAS  Google Scholar 

  46. Tebben PJ, Atkinson JL, Scheithauer BW, Erickson D. Granulomatous adenohypophysitis after interferon and ribavirin therapy. Endocr Pract. 2007;13(2):169–75.

    PubMed  Google Scholar 

  47. Ridruejo E, Chritiensen AF, Mando OG. Central hypothyroidism and hypophysitis during treatment of chronic hepatitis C with pegylated interferon alpha and ribavirin. Eur J Gastroenterol Hepat. 2006;18:693–4.

    Article  Google Scholar 

  48. Barros CM, Betts JG, Thatcher WW, Hansen PJ. Possible mechanisms for reduction of circulating concentrations of progesterone by interferon-a in cows: effects on hyperthermia, luteal cells, metabolism of progesterone and secretion of LH. J Endocrinol. 1992;133:175–82.

    Article  PubMed  CAS  Google Scholar 

  49. Corssmit EPM, Endert E, Sauerwein HP, Romijn JA. Acute effects of interferon-a administration on testosterone concentrations in healthy men. Eur J Endocrinol. 2000;143:371–4.

    Article  PubMed  CAS  Google Scholar 

  50. Orava M, Cantell K, Vihko R. Treatment with preparations of human leukocyte interferon decreases serum testosterone concentrations in men. Int J Cancer. 1986;38:295–6.

    Article  PubMed  CAS  Google Scholar 

  51. Piazza M, Tosone G, Borgia G, Orlando R, Fenzi G, Vitale M, et al. Long-term interferon-alpha therapy does not affect sex hormones in males with chronic hepatitis C. J Interferon Cytokine Res. 1997;17:525–9.

    Article  PubMed  CAS  Google Scholar 

  52. Barreca T, Picciotto A, Franceschini R, Varagona G, Garibaldi A, Valle F, et al. Sex hormones and sex-hormone binding globulin in males with chronic viral hepatitis during recombinant interferon-alpha 2b therapy. J Interferon Res. 1993;13:209–11.

    PubMed  CAS  Google Scholar 

  53. Yamaguchi M, Koike K, Matsuzaki N, Yoshimoto Y, Taniguchi T, Miyake A, et al. The interferon family stimulates the secretions of prolactin and interleukin-6 by the pituitary gland in vitro. J Endocrinol Invest. 1991;14:457–61.

    PubMed  CAS  Google Scholar 

  54. Bohnet SC, Traynor TR, Majde JA, Kacsoh B, Krueger JM. Mice deficient in the interferon type I receptor have reduced REM sleep and altered hypothalamic hypocretin, prolactin and 2', 5'-oligoadenylate synthetase expression. Brain Res. 2004;1027:117–25.

    Article  PubMed  CAS  Google Scholar 

  55. Kumai TTT, Tanaka M, Watanabe M, Shimizu H, Kobayashi S. Effect of interferon-alpha on tyrosine hydorxylase and catecholamine levels in the brain of rats. Life Sci. 2000;67:663–9.

    Article  PubMed  CAS  Google Scholar 

  56. Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27:485–534.

    Article  PubMed  CAS  Google Scholar 

  57. Colao A, Pivonello R, Cappabianca P, Vitale G, Lombardi G. The treatment algorithm of acromegaly. J Endocrinol Invest. 2003;26(8 Suppl):39–45.

    CAS  Google Scholar 

  58. Colao A, Arnaldi G, Beck-Peccoz P, Cannavò S, Cozzi R, degli Uberti E, et al. Pegvisomant in acromegaly: why, when, how. J Endocrinol Invest. 2007;30:693–9.

    PubMed  CAS  Google Scholar 

  59. Melmed S. Medical progress. Acromegaly. N Engl J Med. 2006;355:2558–73.

    Article  PubMed  CAS  Google Scholar 

  60. Murray RD, Melmed S. A critical analysis of clinically available somatostatin analog formulations for therapy of acromegaly. J Clin Endocrinol Metab. 2008, (in press).

  61. Jaffe CA. Clinically non-functioning pituitary adenoma. Pituitary 2006;9:317–21.

    Article  PubMed  Google Scholar 

  62. Labeur M, Theoodoropoulou M, Sievers C, Paez-Pereda M, Castillo V, Aret E, et al. New aspects in the diagnosis and treatment of Cushing disease. Front Horm Res. 2006;35:169–78.

    Article  PubMed  CAS  Google Scholar 

  63. Morris D, Gorssman A. The medical management of Cushing's syndrome. Ann N Y Acad Sci. 2002;970:119–33.

    PubMed  CAS  Google Scholar 

  64. Katahira M, Iwasaki Y, Aoki Y, Oiso Y, Saito H. Cytokine regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. Endocrinology 1998;139:2414–22.

    Article  PubMed  CAS  Google Scholar 

  65. Zennaro R, Petracca EG, Paolini R, Ramazzina E. Normalization of the prolactin values during alfa-interferon therapy: the considerations with a female patient with anti-HCV-positive chronic hepatitis and prolactin-secreting hypophyseal microadenoma. Clin Ter. 1996;147:169–71.

    PubMed  CAS  Google Scholar 

  66. Hofland LJ, de Herder WW, Zuijderwijk J, Uitterlinden P, van Koetsveld PM, Lamberts SW. Interferon-alpha-2a is a potent inhibitor of hormone secretion by cultured human pituitary adenomas. J Clin Endocrinol Metab. 1999;84:3336–43.

    Article  PubMed  CAS  Google Scholar 

  67. Vitale G, van Eijck CH, van Koetsveld PM, Erdmann JJ, Speel EJ, van der Wansem K, et al. Type I interferons in the treatment of pancreatic cancer: mechanisms of action and role of related receptors. Ann Surg. 2007;246:259–68.

    Article  PubMed  Google Scholar 

  68. Vitale G, de Herder WW, van Koetsveld PM, Waaijers M, Schoordijk W, Croze E, et al. Interferon-beta is a highly potent inhibitor of gastroenteropancreatic neuroendocrine tumor cell growth in vitro. Cancer Res. 2006;66:554–62.

    Article  PubMed  CAS  Google Scholar 

  69. van Koetsveld PM, Vitale G, de Herder WW, Feelders RA, van der Wansem K, Waaijers M, et al. Potent inhibitory effects of type i interferons on human adrenocortical carcinoma cell growth. J Clin Endocrinol Metab. 2006;91:4537–43.

    Article  PubMed  CAS  Google Scholar 

  70. Johns TG, Mackay IR, Callister KA, Hertzog PJ, Devenish RJ, Linnane AW. Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon beta. J Natl Cancer Inst. 1992;84:1185–90.

    Article  PubMed  CAS  Google Scholar 

  71. Buchwalder PA, Buclin T, Trinchard I, Munafo A, Biollaz J. Pharmacokinetics and pharmacodynamics of IFN-beta 1a in healthy volunteers. J Interferon Cytokine Res. 2000;20:857–66.

    Article  PubMed  CAS  Google Scholar 

  72. Mager DE, Neuteboom B, Jusko WJ. Pharmacokinetics and pharmacodynamics of PEGylated IFN-beta 1a following subcutaneous administration in monkeys. Pharm Res. 2005;22:58–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vitale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, G., Caraglia, M., van Koetsveld, P.M. et al. Potential role of type I interferons in the treatment of pituitary adenomas. Rev Endocr Metab Disord 10, 125–133 (2009). https://doi.org/10.1007/s11154-008-9083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9083-3

Keywords

Navigation