Skip to main content
Log in

Methods for measurement of pediatric bone

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Many experts believe that optimizing bone mineral accrual early in life may prevent childhood fractures and possibly delay the development of osteoporosis later in life. Adequate nutrition and physical activity are environmental factors important in determining whether or not children acquire an appropriate amount of bone for their body size. Pediatric diseases, or therapeutic interventions used in their treatment, may interfere with normal bone development. Although there are specific methods available for assessing pediatric bone, there is no one method that can adequately assess bone health and identify the specific bone deficits that may be occurring. Understanding the biological basis for bone deficits and the ability of various bone assessment methods to discriminate or measure these deficits is important in understanding normal bone development and how to prevent and treat pediatric bone disease. The purpose of this review is to briefly describe changes in bone with growth, to define “bone density” in biological terms, to discuss some of the issues with pediatric bone measurements, and to review the three main methods for assessing bone parameters in pediatric populations. These methods, including dual energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT) will be described, the advantages and disadvantages discussed, and the relationship between bone parameters and fracture risk presented for each of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khosla S, Melton LJ III, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years. JAMA. 2003;290:1479–85.

    Article  PubMed  CAS  Google Scholar 

  2. Weiler HA, Janzen L, Green K, Grabowski J, Seshia MM, Yuen KC. Percent body fat and bone mass in healthy Canadian females 10 to 19 years of age. Bone. 2000;27:203–7.

    Article  PubMed  CAS  Google Scholar 

  3. Specker BL, Johannsen N, Binkley T, Finn K. Total body bone mineral content and tibial cortical bone measures in preschool children. J Bone Miner Res. 2001;16:2298–305.

    Article  PubMed  CAS  Google Scholar 

  4. Forwood MR, Turner CH. Skeletal adaptations to mechanical usage. Bone. 1995;17:197S–205S.

    PubMed  CAS  Google Scholar 

  5. Landin LA. Epidemiology of children’s fractures. J Pediatr Orthop B. 1997;6:79–83.

    PubMed  CAS  Google Scholar 

  6. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone. 2004;34:771–5.

    Article  PubMed  Google Scholar 

  7. Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children is associated with growth. J Bone Joint Surg. 1989;71:1225–30.

    PubMed  CAS  Google Scholar 

  8. Nafei A, Kabel J, Odgaard A, Linde F, Hvid I. Properties of growing trabecular ovine bone. Part II: Architectural and mechanical properties. J Bone Joint Surg (Br). 2000;82-B:921–7.

    Article  Google Scholar 

  9. Tanck E, Hommingaa J, van Lenthea GH, Huiskes R. Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone. 2001;28:650–4.

    Article  PubMed  CAS  Google Scholar 

  10. Rauch F, Schoenau E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res. 2001;16:597–604.

    Article  PubMed  CAS  Google Scholar 

  11. Trotter M. The density of bones in the young skeleton. Growth. 1971;35:221–31.

    PubMed  CAS  Google Scholar 

  12. Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325:1597–600.

    Article  PubMed  CAS  Google Scholar 

  13. Cowell CT, Lu PW, Lloyd-Jones SA, Briody JN, Allen JR, Humphries IR, Reed E, Knight J, Howman-Giles R, Gaskin K. Volumetric bone mineral density—a potential role in paediatrics. Acta Paediatr Suppl. 1995;411:12–6.

    Article  PubMed  CAS  Google Scholar 

  14. Prentice A, Parsons T, Cole T. Uncritical use of bone mineral density in absorptiometry may lead to size related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60:837–42.

    PubMed  CAS  Google Scholar 

  15. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7:137–45.

    PubMed  CAS  Google Scholar 

  16. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates with bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991;73:1332–9.

    Article  PubMed  CAS  Google Scholar 

  17. Sievanen H, Kannus P, Nieminen V, Heinonen A, Oja P, Vuori I. Estimation of various mechanical characteristics of human bones using dual energy x-ray absorptiometry: methodology and precision. Bone. 1996;18:17s–27s.

    Article  PubMed  CAS  Google Scholar 

  18. Taylor A, Konrad PT, Norman ME, Harcke HT. Total body bone mineral density in young children: Influence of head bone mineral density. J Bone Miner Res. 1997;12:652–5.

    Article  PubMed  CAS  Google Scholar 

  19. Courteix D, Lespessailles E, Obert P, Benhamou CL. Skull bone mass deficit in prepubertal highly-trained gymnast girls. Int J Sports Med. 1999;20:328–33.

    Article  PubMed  CAS  Google Scholar 

  20. Bikle DD, Halloran BP. The response of bone to unloading. J Bone Miner Res. 1999;17:233–44.

    Article  CAS  Google Scholar 

  21. WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. Geneva: WHO Technical Report Series 843; 1994.

    Google Scholar 

  22. Leib ES, Lewiecki EM, Binkley N, Hamdy RC. Official positions of the International Society for Clinical Densitometry. J Clin Densitom. 2004;7:1–5.

    Article  PubMed  Google Scholar 

  23. Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, Mahboubi S, Fan B, Frederick MM, Winter K, Shepherd JA. The bone mineral density in childhood study: bone mineral content and bone mineral density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92:2087–99.

    Article  PubMed  CAS  Google Scholar 

  24. National Council on Radiation Protection and Measurements. Recommendations on Limits for Exposure to Ionizing Radiation. National Council on Radiation Protection and Measurements; 1987.

  25. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.

    Article  PubMed  CAS  Google Scholar 

  26. Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. AJDC. 1984;138:569–70.

    PubMed  CAS  Google Scholar 

  27. Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab. 2003;88:1486–91.

    Article  PubMed  CAS  Google Scholar 

  28. Clark E, Ness AR, Bishop NJ, Tobias JN. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21:1489–95.

    Article  PubMed  Google Scholar 

  29. Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasound attenuation in cancellous bone. Eng Med. 1984;13:89–91.

    Article  PubMed  CAS  Google Scholar 

  30. Baroncelli GI, Federico G, Vignolo M, Valerio G, del Puente A, Maghnie M, Baserga M, Farello G, Saggese G, Group PQU. Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone. 2006;39:159–73.

    Article  PubMed  Google Scholar 

  31. Zadik Z, Price D, Diamond G. Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int. 2003;14:857–62.

    Article  PubMed  Google Scholar 

  32. Dib L, Arabi A, Maalouf J, Nabulsi M, Fuleihan GEH. Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school children. Bone. 2005;36:736–42.

    Article  PubMed  Google Scholar 

  33. Schoenau E. Problems of bone analysis in childhood and adolescence. Pediatr Nephrol. 1998;12:420–9.

    Article  Google Scholar 

  34. Garn SM. The earlier gain and the later loss of cortical bone. Springfield: Charles C. Thomas; 1970.

    Google Scholar 

  35. Fielding KT, Nix DA, Bachrach LK. Comparison of calcaneus ultrasound and dual x-ray absorptiometry in children at risk of osteopenia. J Clin Densitom. 2003;6:7–15.

    Article  PubMed  Google Scholar 

  36. van Rijn RR, van der Sluis IM, Lequin MH, Robben SG, de Muinck Keizer-Schrama SM, Hop WC, van Kuijk C. Tibial quantitative ultrasound versus whole-body and lumbar spine DXA in a Dutch pediatric and adolescent population. Invest Radiol. 2000;35:548–52.

    Article  PubMed  Google Scholar 

  37. Pluskiewica W, Adamczyk P, Drozdzowska B, Szprynger K, Szczepanska M, Halaba Z, Karasek D. Skeletal status in children, adolescents and young adults with end-stage renal failure treated with hemo- orperitoneal dialysis. Osteoporos Int. 2002;13:353–7.

    Article  Google Scholar 

  38. Schoenau E, Saggese G, Peter F, Baroncelli GI, Shaw NJ, Crabtree NJ, Zadik Z, Neu CM, Noordam C, Radetti G, Hochberg Z. From bone biology to bone analysis. Horm Res. 2004;61:254–69.

    Article  CAS  Google Scholar 

  39. Fricke O, Tutlewski B, Schwahn B, Schoenau E. Speed of sound: relation to geometric characteristics of bone in chidlren, adolescents, and adults. J Pediatr. 2005;146:764–8.

    Article  PubMed  Google Scholar 

  40. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J. Ultrasound bone measurement in pediatric subjects. Calif Tissue Int. 1995;56:368–71.

    Article  CAS  Google Scholar 

  41. Baroncelli GI, Federico G, Bertelloni S, Sodini F, De Terlizzi F, Cadossi R, Saggese G. Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res. 2003;54:125–36.

    Article  PubMed  Google Scholar 

  42. Ruegsegger P, Elsasser U, Anliker M, Gnehm H, Kind H, Prader A. Quantification of bone mineralization using computed tomography. Radiology. 1976;121:93–7.

    PubMed  CAS  Google Scholar 

  43. Ruegsegger P. Quantitative computed tomography at peripheral measuring sites. Ann Chir Gynaecol. 1988;77:204–7.

    PubMed  CAS  Google Scholar 

  44. Muller A, Ruegsegger E, Ruegsegger P. Peripheral QCT: a low-risk procedure for identifying women predisposed to osteoporosis. Phys Med Biol. 1989;34:741–9.

    Article  PubMed  CAS  Google Scholar 

  45. Schneider P, Borner W. Peripheral quantitative computed tomography for bone mineral measurement using a new special QCT-scanner: methodology, normal values, comparison with manifest osteoporosis. Rofo. 1991;154:292–9.

    PubMed  CAS  Google Scholar 

  46. Schneider P, Borner W, Rendl J, Eilles C, Schlisske K, Scheubeck M. Significance of two different bone density measurement methods in the assessment of mineral content of the peripheral and axial skeleton. Z Orthop Ihre Grenzgeb. 1992;130:16–21.

    Article  PubMed  CAS  Google Scholar 

  47. Lehmann R, Wapiarz M, Kvasnicka HM, Baedeker S, Klein K, Allolio B. Reproducibility of bone density measurements of the distal radius using a high resolution special scanner for peripheral quantitative computed tomography (single energy pQCT). Radiology. 1992;32:177–81.

    CAS  Google Scholar 

  48. Grampp S, Lang P, Jergas M, Gluer CC, Mathur A, Engelke K, et al. Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual energy x-ray absorptiometry. J Bone Miner Res. 1995;10:1566–76.

    PubMed  CAS  Google Scholar 

  49. Takada M, Engelke K, Hagiwara S, Grampp S, Genant HK. Accuracy and precision study in vitro for peripheral quantitative computed tomography. Osteoporos Int. 1996;6:207–12.

    Article  PubMed  CAS  Google Scholar 

  50. Ferretti JL. Perspectives of pQCT technology associated with biomechanical studies in skeletal research employing rat models. Bone. 1995;17:353S–64S.

    Article  PubMed  CAS  Google Scholar 

  51. Louis O, Willnecker J, Soykens S, Van den Winkel P, Osteaux M. Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens. Osteoporos Int. 1995;5:446–9.

    Article  PubMed  CAS  Google Scholar 

  52. Butz S, Wuster C, Scheidt-Nave C, Gotz M, Ziegler R. Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporos Int. 1994;4:179–84.

    Article  PubMed  CAS  Google Scholar 

  53. Lettgen B. Peripheral quantitative computed tomography: reference data and clinical experiences in chronic diseases. In: Schoenau E, editor. Pediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier Science; 1996. p. 141–6.

    Google Scholar 

  54. Schiessl H, Ferretti JL, Tysarczyk-Niemeyer G, Willnecker J. Noninvasive bone strength index as analyzed by peripheral quantitative computed tomography (pQCT). In: Schoenau E, editor. Paediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier; 1996. p. 141–6.

    Google Scholar 

  55. Schoenau E. The development of the skeletal system in children and the influence of muscular strength. Horm Res. 1998;49:27–31.

    Article  CAS  Google Scholar 

  56. Schoenau E, Werhahn E, Schiedermaier U, Mokow E, Schiessl H, Scheidhauer K, et al. Bone and muscle development during childhood in health and disease. In: Schoenau E, editor. Paediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier Science; 1996. p. 63–6.

    Google Scholar 

  57. De Schepper J, De Boeck H, Louis O. Measurement of radial bone mineral density and cortical thickness in children by peripheral quantitative computed tomography. In: Schoenau E, editor. Paediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier Science; 1996.

    Google Scholar 

  58. Braun MJ, Meta MD, Schneider P, Reiners C. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys Med Biol. 1998;43:2279–94.

    Article  PubMed  CAS  Google Scholar 

  59. Binkley T, Specker B, Wittig T. Centile curves for bone densitometry measurements in healthy males and females ages 5–22 years. J Clin Densitom. 2002;5:343–53.

    Article  PubMed  Google Scholar 

  60. Neu CM, Manz F, Rauch F, Merkel A, Schoenau E. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone. 2001;28:227–32.

    Article  PubMed  CAS  Google Scholar 

  61. Binkley T, Specker B. Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone. 2004;35:1383–8.

    Article  PubMed  Google Scholar 

  62. Johannsen N, Binkley T, Englert V, Niederauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33:533–9.

    Article  PubMed  Google Scholar 

  63. Macdonald H, Kontulainen S, Khan KM, McKay HA. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls. J Bone Miner Res. 2007;22:434–46.

    Article  PubMed  Google Scholar 

  64. Schoenau E, Neu CM, Mokov E, Wassmer G, Manz F. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab. 2000;85:1095–8.

    Article  PubMed  CAS  Google Scholar 

  65. Schoenau E, Neu CM, Rauch F, Manz F. Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone. 2002;31:110–3.

    Article  PubMed  CAS  Google Scholar 

  66. Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3–5 year old children. J Bone Miner Res. 2003;18:885–92.

    Article  PubMed  CAS  Google Scholar 

  67. Specker BL, Beck A, Kalkwarf H, Ho M. Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics. 1997;99:e12.

    Article  PubMed  CAS  Google Scholar 

  68. Binkley TL, Specker BL. pQCT measurement of bone parameters in young children: validation of technique. J Clin Densitom. 2000;3:9–14.

    Article  PubMed  CAS  Google Scholar 

  69. Augat P, Gordon CL, Lang TF, Iida H, Genant HK. Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Biol. 1998;43:2873–83.

    Article  PubMed  CAS  Google Scholar 

  70. Rittweger J, Michaelis I, Giehl M, Wusecke P, Felsenberg D. Adjusting for the partial volume effect in cortical bone analyses of pQCT images. J Musculoskil Neuron Interact. 2004;4:436–41.

    CAS  Google Scholar 

  71. Ferretti JL, Capozza RF, Zanchetta JR. Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone. 1996;18:97–102.

    Article  PubMed  CAS  Google Scholar 

  72. Schneider P, Reiners C, Cointry GR, Capozza RF, Ferretti JL. Bone quality parameters of the distal radius as assessed by pQCT in normal and fractured women. Osteoporos Int. 2001;12:639–46.

    Article  PubMed  CAS  Google Scholar 

  73. Augat P, Reeb H, Claes LE. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res. 1996;11:1356–63.

    Article  PubMed  CAS  Google Scholar 

  74. Schoenau E, Neu CM, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res. 2002;17:1095–101.

    Article  PubMed  Google Scholar 

  75. Fewtrell MS. Bone densitometry in children assessed by dual x-ray absorptiometry: uses and pitfalls. Arch Dis Child. 2003;88:795–8.

    Article  PubMed  CAS  Google Scholar 

  76. Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay HA, Moyer-Mileur L, Shepherd J, Specker B, Ward K, Hans D. Peripheral quantitative computed tomography in children and adolescents: the ISCD 2007 pediatric official position. J Clin Densitom. 2008 (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonny L. Specker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binkley, T.L., Berry, R. & Specker, B.L. Methods for measurement of pediatric bone. Rev Endocr Metab Disord 9, 95–106 (2008). https://doi.org/10.1007/s11154-008-9073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9073-5

Keywords

Navigation