Skip to main content

Advertisement

Log in

Role of metabolic programming in the pathogenesis of β-cell failure in postnatal life

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Intrauterine growth retardation (IUGR) has been linked to later development of type 2 diabetes in adulthood. Human studies indicate that individuals who were growth retarded at birth have impaired insulin secretion and insulin resistance. Multiple animal models of IUGR demonstrate impaired β-cell function and development. We have developed a model of IUGR in the rat that leads to diabetes in adulthood with the salient features of most forms of type 2 diabetes in the human: progressive defects in insulin secretion and insulin action prior to the onset of overt hyperglycemia. Decreased β-cell proliferation leads to a progressive decline in β-cell mass. Using this model, we have tested the hypothesis that uteroplacental insufficiency disrupts the function of the electron transport chain in the fetal β-cell and leads to a debilitating cascade of events: increased production of reactive oxygen species, which in turn damage mitochondrial (mt) mtDNA and causes further production of reactive oxygen species (ROS). The net result is progressive loss of β-cell function and eventual development of type 2 diabetes in the adult. Studies in the IUGR rat also demonstrate that an abnormal intrauterine environment induces epigenetic modifications of key genes regulating β-cell development; experiments directly link chromatin remodeling with suppression of transcription. Future research will be directed at elucidating the mechanisms underlying epigenetic modifications in offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

IUGR:

intrauterine growth retardation

SGA:

small for gestational age

LP:

low protein

HDAC1:

histone deacetylase 1

References

  1. Hales CN, Barker DJP. Type 2 diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992;35:595–601.

    PubMed  CAS  Google Scholar 

  2. Kermack WO. Death rates in Great Britain and Sweden. Lancet 1934;1:698–703.

    Google Scholar 

  3. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976;295:349–53.

    Article  PubMed  CAS  Google Scholar 

  4. Barker DJP. The developmental origins of adult disease. J Am Coll Nutr 2004;23:588S–95S.

    PubMed  CAS  Google Scholar 

  5. Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP. Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia 1994;37:624–31.

    PubMed  CAS  Google Scholar 

  6. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab 2000;85:1401–6.

    PubMed  CAS  Google Scholar 

  7. Egeland GM, Skjaerven R, Irgrens LM. Birth characteristics of women who develop gestational diabetes: population based study. BMJ 2000;321:546–7.

    PubMed  CAS  Google Scholar 

  8. Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000;133:176–82.

    PubMed  CAS  Google Scholar 

  9. Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med 1999;130:278–84.

    PubMed  CAS  Google Scholar 

  10. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension 2000;36:790–4.

    PubMed  CAS  Google Scholar 

  11. Bavdekar A, Sachdev HS, Fall CHD, Osmond C, Lakshmy R, Barker DJP, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004;350:865–75.

    Google Scholar 

  12. Whincup PH, Cook DG, Adshead T, Taylor SJC, Walker M, Papcosta O, et al. Childhood size is more strongly related than size at birth to glucose and insulin levels in 10–11 year-old children. Diabetologia 1997;40:319–26.

    PubMed  CAS  Google Scholar 

  13. Martin RM, McCarthy A, Smith GD, Davies DP, Ben-Shlomo Y. Infant nutrition and blood pressure in early adulthood: the Barry Caerphilly Growth study. Am J Clin Nutr 2003;77:1489–97.

    PubMed  CAS  Google Scholar 

  14. Law CM, Shiell AW, Newsome CA, Syddall HE, Shinebourne EA, Fayers PM, et al. Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 2002;105:1088–92.

    PubMed  CAS  Google Scholar 

  15. Li C, Johnson MS, Goran MI. Effects of low birth weight on insulin resistance syndrome in Caucasion and African-American children. Diabetes Care 2001;24:2035–42.

    PubMed  CAS  Google Scholar 

  16. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005;115:290–6.

    Google Scholar 

  17. Clausen JO, Borch-Johnsen K, Pedersen O. Relation between birth weight and the insulin sensitivity index in a population sample of 331 young, healthy Caucasians. Am J Epidemiol 1997;146:23–31.

    PubMed  CAS  Google Scholar 

  18. Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS, Phillips DI. Fetal growth and the physiological control of glucose tolerance in adults: a minimal model analysis. Am J Physiol Endocrinol Metab 2000;278:E700–6.

    PubMed  CAS  Google Scholar 

  19. Van Assche FA, De Prins F, Aerts L, Verjans F. The endocrine pancreas in small-for dates infants. Br J Obstet Gynaecol 1977;84:751–3.

    PubMed  Google Scholar 

  20. Beringue F, Blondeau B, Castellotti MC, Breant B, Czernichow P, Polak M. Endocrine pancreas development in growth-retarded human fetuses. Diabetes 2005;51:385–91.

    Google Scholar 

  21. Econimides DL, Proudler A, Nicolaides KH. Plasma insulin in appropriate and small for gestational age fetuses. Am J Obstet Gynecol 1989;160:1091–4.

    Google Scholar 

  22. Setia S, Sridhar MG, Bhat V, Chaturvedula L, Vinayagamoorti R, John M. Insulin sensitivity and insulin secretion at birth in intrauterine growth retarded infants. Pathology 2006;38:236–8.

    PubMed  CAS  Google Scholar 

  23. Bazaes RA, Salazar TE, Pittaluga E. Glucose and lipid metabolism in small for gestational age infants at 48 hours of age. Pediatrics 2003;111:804–9.

    PubMed  Google Scholar 

  24. Jensen CB, Storgaard H, Dela F, Holst JJ, Madsbad S, Vaag AA. Early differential defects of insulin secretion and action in 19-year-old Caucasian men who had low birth weight. Diabetes 2002;51:1271–80.

    PubMed  CAS  Google Scholar 

  25. Pettitt DJ, Baird HR, Aleck KA, Knowler WC. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 1983;308:242–5.

    Article  PubMed  CAS  Google Scholar 

  26. Pettitt DJ, Aleck KA, Baird HA, Carraher MJ, Bennett PH, Knowler WC. Congenital susceptibility to NIDDM: Role of the intrauterine environment. Diabetes 1988;37:622–8.

    PubMed  CAS  Google Scholar 

  27. Martin AO, Simpson JL, Ober C, Freinkel N. Frequency of diabetes mellitus in mothers of probands with gestational diabetes: possible maternal influence on the predisposition to gestational diabetes. Am J Obstet Gynecol 1985;151:471–5.

    PubMed  CAS  Google Scholar 

  28. Silverman B, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers: Relationship to fetal hyperinsulinism. Diabetes Care 1995;18:611–7.

    PubMed  CAS  Google Scholar 

  29. Holemans K, Aerts L, Van Assche FA. Lifetime consequences of abnormal fetal pancreatic development. J Physiol 2003;547:11–20.

    PubMed  CAS  Google Scholar 

  30. Plagemann A, Harder T, Kohlhoff R, Rohde W, Dorner G. Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 1997;40:1094–200.

    PubMed  CAS  Google Scholar 

  31. Barnett AH, Eff C, Leslie RDG, Pyke DA. Diabetes in identical twins. Diabetologia 1981;20:87–93.

    PubMed  CAS  Google Scholar 

  32. Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 diabetes mellitus in male twins. Diabetologia 1987;30:763–8.

    PubMed  CAS  Google Scholar 

  33. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 1990;113:909–15.

    PubMed  CAS  Google Scholar 

  34. Vaag A, Henricksen JE, Madsbad S, Holm N, Beck-Nielsen H. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for NIDDM. J Clin Invest 1995;95:690–8.

    PubMed  CAS  Google Scholar 

  35. Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 1999;353:1789–92.

    PubMed  CAS  Google Scholar 

  36. Froguel P, Zouali H, Vionnet N. Familial hyperglycemia due to mutations in glucokinase:definition of a subtype of diabetes mellitus. N Engl J Med 1993;328:697–702.

    PubMed  CAS  Google Scholar 

  37. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 1998;19:268–70.

    PubMed  CAS  Google Scholar 

  38. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38:320–3.

    PubMed  CAS  Google Scholar 

  39. Damcott CM, Pollin TI, Reinhart LJ, Ott SH, Shen H, Silver KD, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes 2006;55:2654–9.

    PubMed  CAS  Google Scholar 

  40. Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjogren M, et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006;55:2890–5.

    PubMed  CAS  Google Scholar 

  41. Munoz J, Lok KH, Gower BA, Fernandez JR, Hunter GR, Lara-Castro C, et al. Polymorphism in the transcription factor 7-like 2 (TCF7L2) gene is associated with reduced insulin secretion in nondiabetic women. Diabetes 2006;55:3630–4.

    PubMed  CAS  Google Scholar 

  42. Freathy RM, Weedon MN, Bennett A, Hypponen E, Relton CL, Knight B, et al. Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals. Am J Hum Genet 2007;80:1150–61.

    PubMed  CAS  Google Scholar 

  43. Kubaszek A, Markkanen A, Eriksson JG, Forsen T, Osmond C, Barker DJ, et al. The association of the K121Q polymorphism of the plasma cell glycoprotein-1 gene with type 2 diabetes and hypertension depends on size at birth. J Clin Endocrinol Metab 2004;89:2044–7.

    PubMed  CAS  Google Scholar 

  44. Eriksson JG, Lindi V, Uusitupa M, Forsen TJ, Laakso M, Osmond C, et al. The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes 2002;517:2321–4.

    Google Scholar 

  45. Rahier J, Wallon J, Henquin J-C. Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 1981;20:540–6.

    PubMed  CAS  Google Scholar 

  46. Von Dorsche H, Reiher H, Hahn H-J. Phases in the early development of the human islet organ. Anat Anz 1988;166:69–76.

    Google Scholar 

  47. Dahri S, Reusens B, Remacle C, Hoet JJ. Nutritional influences on pancreatic development and potential links with non-insulin-dependent diabetes. Proc Nutr Soc 1995;54:345–56.

    PubMed  CAS  Google Scholar 

  48. Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ. Islet function in off-spring of mothers on low-protein diet during gestation. Diabetes 1991;40:115–20.

    PubMed  CAS  Google Scholar 

  49. Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 1990;57:107–18.

    Article  PubMed  CAS  Google Scholar 

  50. Berney DM, Desai M, Palmer DJ, Greenwald S, Brown A, Hales CN, et al. The effects of maternal protein deprivation on the fetal rat pancreas: major structural changes and their recuperation. J Pathol 1997;183:109–15.

    PubMed  CAS  Google Scholar 

  51. Wilson MR, Hughes SJ. The effect of maternal protein deficiency during pregnancy and lactation on glucose tolerance and pancreatic islet function in adult rat offspring. J Endocrinol 1997;154:177–85.

    PubMed  CAS  Google Scholar 

  52. Bertin E, Gangnerau MN, Bellon G, Bailbe D, Arbelot De Vacquer A, Portha B. Development of beta-cell mass in fetuses of rats deprived of protein and/or energy in last trimester of pregnancy. Am J Physiol Regul Integr Comp Physiol 2002;283:R623–30.

    PubMed  CAS  Google Scholar 

  53. Boujendar S, Reusens B, Merezak S, Ahn MT, Arany E, Hill D, et al. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 2002;45:856–66.

    PubMed  CAS  Google Scholar 

  54. Petrik J, Reusens B, Arany E, Remacle C, Hoet JJ, Hill DJ. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat, and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 1999;140:4861–73.

    PubMed  CAS  Google Scholar 

  55. Reusens B, Remacle C. Effects of maternal nutrition and metabolism on the developing endocrine pancreas. In: Barker DJP, editors. Fetal origins of cardiovascular and lung disease. New York: Marcel Dekker Inc; 2000. pp. 339–58.

    Google Scholar 

  56. Arantes VC, Teixeira VPA, Reis MAB, Latorraca MQ, Leite AR, Carneiro EM, et al. Expression of PDX-1 is reduced in pancreatic islets from pups of rat dams fed a low protein diet during gestation and lactation. J Nutr 2002;132:3030–5.

    PubMed  CAS  Google Scholar 

  57. Melloul D. Transcription factors in islet development and physiology: role of PDX-1 in beta-cell function. Ann N Y Acad Sci 2004;1014:28–37.

    PubMed  CAS  Google Scholar 

  58. Petry CJ, Dorling MW, Pawlak DB, Ozanne SE, Hales CN. Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2001;2:139–43.

    PubMed  CAS  Google Scholar 

  59. Ozanne SE, Wang CL, Coleman N, Smith GD. Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats. Am J Physiol 1996;271:E1128–34.

    PubMed  CAS  Google Scholar 

  60. Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag AA. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 2005;48:547–52.

    PubMed  CAS  Google Scholar 

  61. Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL, et al. Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 2003;177:235–41.

    PubMed  CAS  Google Scholar 

  62. Fernandez-Twinn DS, Wayman A, Ekizoglou S, Martin MS, Hales CN, Ozanne SE. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring. Am J Physiol Regul Integr Comp Physiol 2005;288:R368–73.

    Google Scholar 

  63. Garofano A, Czernichow P, Bréant B. In utero undernutrition impairs rat beta-cell development. Diabetologia 1997;40:1231–4.

    PubMed  CAS  Google Scholar 

  64. Garofano A, Czernichow P, Bréant B. Effect of ageing on beta-cell mass and function in rats malnourished during the perinatal period. Diabetologia 1999;42:711–8.

    PubMed  CAS  Google Scholar 

  65. Shen CN, Seckl JR, Slack JM, Tosh D: Glucocorticoids suppress beta-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J 2003;375(Pt 1):41–50.

    PubMed  CAS  Google Scholar 

  66. Limesand SW, Jensen J, Hutton JC, Hay Jr, WW. Diminished β-cell replication contributes to reduced β-cell mass in fetal sheep with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2005;288:R1297–305.

    PubMed  CAS  Google Scholar 

  67. Limesand SW, Rozance PJ, Zerbe GO, Hutton JC, Hay Jr, WW. Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. Endocrinology 2006;147:1488–97.

    PubMed  CAS  Google Scholar 

  68. Ogata Es, Bussey M, Finley S. Altered gas exchange, limited glucose, branched chain amino acids, and hypoinsulinism retard fetal growth in the rat. Metabolism 1986;35:950–77.

    Google Scholar 

  69. Simmons RA, Templeton L, Gertz S, Niu H. Intrauterine growth retardation leads to type iI diabetes in adulthood in the rat. Diabetes 2001;50:2279–86.

    PubMed  CAS  Google Scholar 

  70. Boloker J, Gertz S, Simmons RA. Offspring of diabetic rats develop obesity and type iI diabetes in adulthood. Diabetes 2002;51:1499–506.

    PubMed  CAS  Google Scholar 

  71. Simmons RA, Gounis AS, Bangalore SA, Ogata ES. Intrauterine growth retardation: Fetal glucose transport is diminished in lung but spared in brain. Pediatr Res 1991;31:59–63.

    Google Scholar 

  72. Unterman T, Lascon R, Gotway M, Oehler D, Gounis A, Simmons RA, et al. Circulating levels of insulin-like growth factor binding protein-1 (IGFBP-1) and hepatic mRNA are increased in the small for gestational age fetal rat. Endocrinology 1990;127:2035–7.

    Article  PubMed  CAS  Google Scholar 

  73. Stoffers DA, Desai BM, DeLeon DD, Simmons RA. Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 2003;52:734–40.

    PubMed  CAS  Google Scholar 

  74. Myatt L, Eis ALW, Brockman DE, Kossenjans W, Greer IA, Lyall F. Differential localization of superoxide dismutase isoforms in placental villous tissue of normotensive, pre-eclamptic, and intrauterine growth-restricted pregnancies. J Histochem Cytochem 1997;45:1433–8.

    PubMed  CAS  Google Scholar 

  75. Karowicz-Bilinska A, Suzin J, Sieroszewski P. Evaluation of oxidative stress indices during treatment in pregnant women with intrauterine growth retardation. Med Sci Monit 2002;CR211–6.

  76. Ejima K, Nanri H, Toki N, Kashimura M, Ikeda M. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta 1999;20:95–101.

    PubMed  CAS  Google Scholar 

  77. Kato H, Yoneyama Y, Araki T. Fetal plasma lipid peroxide levels in pregnancies complicated by preeclampsia. Gynecol Obstet Invest 1997;43:158–61.

    Article  PubMed  CAS  Google Scholar 

  78. Bowen RS, Moodley J, Dutton MF, Theron AJ. Oxidative stress in pre-eclampsia. Acta Obstet Gynecol Scand2001;80:719–25.

    PubMed  CAS  Google Scholar 

  79. Wang Y, Walsh SW. Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta 2001;22:206–12.

    PubMed  CAS  Google Scholar 

  80. Wang Y, Walsh SW. Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta 1998;19:581–6.

    PubMed  CAS  Google Scholar 

  81. Panten U, Zielman S, Langer J, Zunkler BJ, Lenzen S. Regulation of insulin secretion by energy metabolism in pancreatic β-cell mitochondria. Biochem J 1984;219:189–96.

    PubMed  CAS  Google Scholar 

  82. Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic β-cell signal transduction. Annu Rev Biochem 1995;64:689–719.

    PubMed  CAS  Google Scholar 

  83. Schuit F. Metabolic fate of glucose in purified islet cells. Glucose regulated anaplerosis in β-cells. J Biol Chem 1997;272:18572–9.

    PubMed  CAS  Google Scholar 

  84. Mertz RJ, Worley JF III, Spencer B, Johnson JH, Dukes ID. Activation of stimulus-secretion coupling in pancreatic β-cells by specific products of glucose metabolism. J Biol Chem 1996;271:4838–45.

    PubMed  CAS  Google Scholar 

  85. Ortsater H, Liss P, Akerman KEO. Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion. Pflugers Arch 2002;444:506–12.

    PubMed  Google Scholar 

  86. Antinozzi PA, Ishihara H, Newgard CB, Wollheim CB. Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell. A survey of four fuel secretagogues. J Biol Chem 2002;277:11746–55.

    PubMed  CAS  Google Scholar 

  87. Malaisse WJ, Hutton JC, Carpinelli AR, Herchuelz A, Senner A. The stimulus-secretion coupling of amino acid-induced insulin release. Metabolism and cationic effects of leucine. Diabetes 1980;29:431–7.

    PubMed  CAS  Google Scholar 

  88. Lenzen S, Schmidt W, Rustenbeck I, Panten U. 2-Ketoglutarate generation in pancreatic β-cell mitochondria regulates insulin secretory action of amino acids and 2-keto acids. Biosci Rep 1986;6:163–9.

    PubMed  CAS  Google Scholar 

  89. Noda M, Yamashita S, Takahashi N, Et K, Shen LM, Izumi K, et al. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of beta HC9 cells deficient in mitochondrial DNA transcription. J Biol Chem 2002;277:41817–26.

    PubMed  CAS  Google Scholar 

  90. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996;20:463–6.

    PubMed  CAS  Google Scholar 

  91. Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relationship between antioxidant enzyme gene expression and antioxidant defense status of insulin-producing cells. Diabetes 1997;46:1733–42.

    PubMed  CAS  Google Scholar 

  92. Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 1999;274:27905–13.

    PubMed  CAS  Google Scholar 

  93. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells. Biochem Biophys Res Commun 2003;300:216–22.

    PubMed  CAS  Google Scholar 

  94. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 2002;277:30010–8.

    PubMed  CAS  Google Scholar 

  95. Kaneto HH, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of protein kinase C beta 2 in c-myc induction by high glucose in pancreatic beta-cells. J Biol Chem 2002;277:3680–5.

    PubMed  CAS  Google Scholar 

  96. Kaneto H, Xu G, Song KH, Suzuma K, Bonner-Weir S, Sharma A, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem 2001;276:31099–104.

    PubMed  CAS  Google Scholar 

  97. Kaneto H, Kajimoto Y, Fujitani Y, Matsuoka T, Sakamoto K, Matsuhisa M, et al. Oxidative stress induces p21 expression in pancreatic islet cells: possible implication in beta-cell dysfunction. Diabetologia 1999;42:1093–7.

    PubMed  CAS  Google Scholar 

  98. Jonas JC, Laybutt DR, Steil GM, Trivedi N, Pertusa JG, Van de Casteele M, et al. High glucose stimulates early response gene c-Myc expression in rat pancreatic beta cells. J Biol Chem 2001;276:35375–81.

    PubMed  CAS  Google Scholar 

  99. Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, et al. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem 1999;274:14112–21.

    PubMed  CAS  Google Scholar 

  100. Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S, et al. Glucose and tolbutamide induce apopotosis in pancreatic β-cells. J Biol Chem 1998;273:22501–7.

    Google Scholar 

  101. Moran A, Zhang HJ, Olsonm LK, Harmon JS, Poitoust V, Robertson RP. Differentiation of glucose toxicity from β-cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest 2000;99:534–9.

    Google Scholar 

  102. Donath MY, Gross DJ, Cerasi E, Kaiser N. Hyperglycemia-induced β-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 1999;48:738–44.

    PubMed  CAS  Google Scholar 

  103. Silva JP, Kohler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, et al. Impaired insulin secretion and β-cell loss in tissue specific knockout mice with mitochondrial diabetes. Nat Genet 2000;26:336–40.

    PubMed  CAS  Google Scholar 

  104. Simmons RA, Suponitsky-Kroyter I, Selak M. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem 2005;280:28785–91.

    PubMed  CAS  Google Scholar 

  105. Bannister AJ, Kouzarides T. Reversing histone methylation. Nature 2005;436:1103–6.

    PubMed  CAS  Google Scholar 

  106. Bernstein E, Allis CD. RNA meets chromatin. Genes Dev 2005;19:1635–55.

    PubMed  CAS  Google Scholar 

  107. Sproul D, Gilbert N, Bickmore WA. The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 2005;6:775–81.

    PubMed  CAS  Google Scholar 

  108. Schubeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE, et al. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol 2000;20:1903–12.

    Google Scholar 

  109. Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003;101:2784–8.

    PubMed  CAS  Google Scholar 

  110. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001;28:29–35.

    PubMed  CAS  Google Scholar 

  111. He B, You L, Uematsu K, Zang K, Xu Z, Lee AY, et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A 2003;100:14133–8.

    PubMed  CAS  Google Scholar 

  112. Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y. HOX gene clusters are hotspots of de novo methylation in CpG islands of human lung adenocarcinomas. Oncogene 2002;21:3659–63.

    PubMed  CAS  Google Scholar 

  113. So K, Tamura G, Honda T, Homma N, Waki T, Togawa N, et al. Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Sci 2006;97:1155–8.

    PubMed  CAS  Google Scholar 

  114. Takahashi T, Shigematsu H, Shivapurkar N, Reddy J, Zheng Y, Feng Z, et al. Aberrant promoter methylation of multiple genes during multistep pathogenesis of colorectal cancers. Int J Cancer 2006;118:924–31.

    PubMed  CAS  Google Scholar 

  115. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. Predicting aberrant CpG island methylation. Proc Natl Acad Sci U S A 2003;100:12253–8.

    PubMed  CAS  Google Scholar 

  116. Cerda S, Weitzman SA. Influence of oxygen radical injury on DNA methylation. Mutat Res 1997;386:141–52.

    PubMed  CAS  Google Scholar 

  117. Drake J, Petroze R, Castegna A, Ding Q, Keller JN, Markesbery WR, et al. 4-Hydroxynonenal oxidatively modifies histones: implications for Alzheimer’s disease. Neurosci Lett 2004;356:155–8.

    PubMed  CAS  Google Scholar 

  118. Gilmour PS, Rahman I, Donaldson K, MacNee W. Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Lung Cell Mol Physiol 2003;284:L533–40.

    PubMed  CAS  Google Scholar 

  119. Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem 2002;234–235:239–48.

    PubMed  Google Scholar 

  120. MacLennan NK, James SJ, Melnyk S, Piroozi A, Jernigan S, Hsu JL, et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics 2004;18:43–50.

    PubMed  Google Scholar 

  121. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH. Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 2003;285:R962–70.

    PubMed  CAS  Google Scholar 

  122. Fu Q, McKnight RA, Yu X, Wang L, Callaway CW, Lane RH. Uteroplacental insufficiency induces site-specific changes in histone H3 covalent modifications and affects DNA-histone H3 positioning in day 0 IUGR rat liver. Physiol Genomics 2004;20:108–16.

    PubMed  CAS  Google Scholar 

  123. Ke X, Lei Q, James SJ, Kelleher SL, Melnyk S, Jernigan S, et al. Uteroplacental insufficiency affects epigenetic determinants of chromatin structure in brains of neonatal and juvenile IUGR rats. Physiol Genomics 2006;25:16–28.

    PubMed  CAS  Google Scholar 

  124. Fu Q, McKnight RA, Yu X, Callaway CW, Lane RH. Growth retardation alters the epigenetic characteristics of hepatic dual specificity phosphatase 5. FASEB J 2006;20:2127–9.

    PubMed  CAS  Google Scholar 

  125. Park J, Suponitsky-Kroyter I, Niu H, Simmons RA. Epigenetic silencing of Pdx-1 in growth retarded (IUGR) rats. Pediatr Res 2006;59:1572A.

    Google Scholar 

  126. Gerrish K, Van Velkinburgh JC, Stein R. Conserved transcriptional regulatory domains of the pdx-1 gene. Mol Endocrinol 2004;18:533–48.

    PubMed  CAS  Google Scholar 

  127. Georgel PT, Horowitz-Scherer A, Adkins N, Woodcock CL, Wade PA, Hansen JC. Chromatin compaction by human MeCP2. J Biol Chem 2003;278:32181–5.

    PubMed  CAS  Google Scholar 

  128. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997;88:471–81.

    PubMed  CAS  Google Scholar 

  129. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19:187–91.

    PubMed  CAS  Google Scholar 

  130. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone adeacetylase complex. Nature 1998;393:386–9.

    PubMed  CAS  Google Scholar 

  131. Fuks F, Burgers WA, Brehm A, Hugh-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000;24:88–91.

    PubMed  CAS  Google Scholar 

  132. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, et al. DNA methylation-related chromatin remodeling in activity dependent Bdnf gene regulation. Science 2003;302:890–3.

    PubMed  CAS  Google Scholar 

  133. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606–9.

    PubMed  CAS  Google Scholar 

  134. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 coding region. Nat Genet 1997;15:106–10.

    PubMed  CAS  Google Scholar 

  135. Dutta S, Bonner-Weir S, Montminy M, Wright CV. Regulatory factor linked to late-onset diabetes? Nature 1998;392:560.

    PubMed  CAS  Google Scholar 

  136. Brissova M, Shiota M, Nicholson WE, Gannon M, Knobel SM, Piston DW, et al. Reduction in pancreatic transcription factor Pdx-1 impairs glucose-stimulated insulin secretion. J Biol Chem 2002;277:11225–32.

    PubMed  CAS  Google Scholar 

  137. Hani EH, Stoffers DA, Chevre JC, Durand E, Stanojevic V, Dina C, et al. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest 1999;104:R41–8.

    Article  PubMed  CAS  Google Scholar 

  138. Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF-1. Nat Genet 1997;17:138–9.

    PubMed  CAS  Google Scholar 

  139. Morris SA, Rao B, Garcia BA, Hake SB, Diaz RL, Shabanowitz J, et al. Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J Biol Chem 2007;282:7632–40.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Rebecca Simmons is supported by the National Institutes of Health grant nos. DK55704 and AG20898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Simmons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, R.A. Role of metabolic programming in the pathogenesis of β-cell failure in postnatal life. Rev Endocr Metab Disord 8, 95–104 (2007). https://doi.org/10.1007/s11154-007-9045-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-007-9045-1

Keywords

Navigation