Skip to main content

Advertisement

Log in

Osteoclastic differentiation and function regulated by old and new pathways

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The osteoclast is a specialized multinucleated variant of the macrophage family. It degrades mineralized tissue, and is required for modeling and remodeling of bone. The osteoclast has long been known to require vitamin D for its differentiation and to be regulated by parathyroid hormone via circulating Ca2+ levels. Two local signals important in osteoclast survival and differentiation, CSF-1 and RANKL, were characterized by the mid-1990s. A basic framework of specialized cell attachment and resorption molecules was also clear by that time, including the αvβ3 integrin, the key adhesion molecule of the mature osteoclast, the highly expressed vacuolar-type H+-ATPase that drives acid secretion to dissolve mineral, and cathepsin K, the predominant acid proteinase for collagenolysis. Recently, additional detail has been added to this framework, showing that the osteoclast has more complex regulation than was previously believed. These include the findings that one component of the V-H+-ATPase is unique to the osteoclast, that chloride transport and probably Cl/H+ exchange are also required for mineral degradation, and that additional receptors besides RANK and Fms regulate osteoclast formation and survival. Additional receptors include estrogen receptor-α, TNF-family receptors other than RANK, and, at least in some cases, glycoprotein hormone receptors including the TSH-R and the FSH-R. Challenges in understanding osteoclast biology include how the signalling mechanisms function cooperatively. Recent findings suggest that there is a network of cytoplasmic adapters, including Gab-2 and BCAR1, which are modified by multiple signalling mechanisms and which serve to integrate the signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, et al. TSH is a negative regulator of skeletal remodeling. Cell 2003;115:151–62.

    PubMed  CAS  Google Scholar 

  2. Akiyama T, Bouillet P, Miyazaki T, Kadono Y, Chikuda H, Chung UI, et al. Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J 2003;22:6653–64.

    PubMed  CAS  Google Scholar 

  3. Albright F, Reifenstein Jr EC. The parathyroid glands and metabolic bone disease: selected studies. Baltimore, Maryland: Williams & Wilkins; 1948. p. 348.

    Google Scholar 

  4. Alvarez JI, Teitelbaum SL, Blair HC, Greenfield EM, Athanasou NA, Ross FP. Generation of avian cells resembling osteoclasts from mononuclear phagocytes. Endocrinology 1991;128:2324–35.

    PubMed  CAS  Google Scholar 

  5. Ammann P, Rizzoli R, Bonjour JP, Bourrin S, Meyer JM, Vassalli P, Garcia I. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997;99:1699–703.

    PubMed  CAS  Google Scholar 

  6. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390:175–9.

    PubMed  CAS  Google Scholar 

  7. Athanasou NA, Quinn J. Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol 1990;43:997–1003.

    PubMed  CAS  Google Scholar 

  8. Bekker PJ, Gay CV. Characterization of a Ca2(+)-ATPase in osteoclast plasma membrane. J Bone Miner Res 1990;5:557–67.

    Article  PubMed  CAS  Google Scholar 

  9. Blair HC, Borysenko CW, Villa A, Schlesinger PH, Kalla SE, Yaroslavskiy BB, et al. In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J Bone Miner Res 2004;19:1329–38.

    PubMed  Google Scholar 

  10. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989;245:855–7.

    PubMed  CAS  Google Scholar 

  11. Brandt S, Jentsch TJ. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett 1995;377:15–20.

    PubMed  CAS  Google Scholar 

  12. Cabodi S, Moro L, Baj G, Smeriglio M, Di Stefano P, Gippone S, et al. Defilippi. p130Cas interacts with ERa and modulates non-genomic estrogen signaling in breast cancer cells. J Cell Sci 2004;117:1603–11.

    PubMed  CAS  Google Scholar 

  13. Cao L, Bu R, Oakley JI, Kalla SE, Blair HC. Estrogen receptor-beta modulates synthesis of bone matrix proteins in human osteoblast-like MG63 cells. J Cell Biochem 2003 May 1;89(1):152–64.

    PubMed  CAS  Google Scholar 

  14. Carn G, Koller DL, Peacock M, Hui SL, Evans WE, Conneally PM, et al. Sibling pair linkage and association studies between peak bone mineral density and the gene locus for the osteoclast-specific subunit (OC116) of the vacuolar proton pump on chromosome 11p12–13. J Clin Endocrinol Metab 2002;87:3819–24.

    PubMed  CAS  Google Scholar 

  15. Cenci S, Toraldo G, Weitzmann MN, Roggia C, Gao Y, Qian WP, et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA 2003;100:10405–10.

    PubMed  CAS  Google Scholar 

  16. Ceredig R. The ontogeny of B cells in the thymus of normal, CD3 epsilon knockout (KO), RAG-2 KO and IL-7 transgenic mice. Int Immunol 2002 Jan;14(1):87–99.

    PubMed  CAS  Google Scholar 

  17. Chellaiah MA, Biswas RS, Yuen D, Alvarez UM, Hruska KA. Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin. J Biol Chem 2001;276:47434–44.

    PubMed  CAS  Google Scholar 

  18. Cleiren E, et al. Albers–Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001;10:2861–7.

    PubMed  CAS  Google Scholar 

  19. Compston JE. Osteoporosis after liver transplantation. Liver Transpl 2003;9:321–30.

    PubMed  Google Scholar 

  20. Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, et al. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 2004;164:509–14.

    PubMed  CAS  Google Scholar 

  21. Davies CC, Mak TW, Young LS, Eliopoulos AG. TRAF6 is required for TRAF2-dependent CD40 signal transduction in nonhemopoietic cells. Mol Cell Biol 2005;25:9806–19.

    PubMed  CAS  Google Scholar 

  22. De Klerck B, Carpentier I, Lories RJ, Habraken Y, Piette J, Carmeliet G, et al. Enhanced osteoclast development in collagen-induced arthritis in interferon-gamma receptor knock-out mice as related to increased splenic CD11b+ myelopoiesis. Arthritis Res Ther 2004;6:R220–31.

    PubMed  Google Scholar 

  23. Dempster DW, Hughes-Begos CE, Plavetic-Chee K, Brandao-Burch A, Cosman F, Nieves J, et al. Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem 2005;95:139–48.

    PubMed  CAS  Google Scholar 

  24. Diewald L, Rupp J, Dreger M, Hucho F, Gillen C, Nawrath H. Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis. Biochem Biophys Res Commun 2002;291:421–4.

    PubMed  CAS  Google Scholar 

  25. Eberhardt AW, Yeager-Jones A, Blair HC. Regional trabecular bone matrix degeneration and osteocyte death in femora of glucocorticoid treated rabbits. Endocrinology 2001;142:1333–40.

    PubMed  CAS  Google Scholar 

  26. Elsegood CL, Zhuo Y, Wesolowski GA, Hamilton JA, Rodan GA, Duong LT. M-CSF induces the stable interaction of cFms with alpha(V)beta(3) integrin in osteoclasts. Int J Biochem Cell Biol 2006;38(9):1518–29.

    PubMed  CAS  Google Scholar 

  27. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998;273:14363–7.

    PubMed  CAS  Google Scholar 

  28. Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 2000;151:879–89.

    PubMed  CAS  Google Scholar 

  29. Eu JP, Xu L, Stamler JS, Meissner G. Regulation of ryanodine receptors by reactive nitrogen species. Biochem Pharmacol 1999;57:1079–84.

    PubMed  CAS  Google Scholar 

  30. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, et al. Vav3 regulates osteoclast function and bone mass. Nat Med 2005 Mar;11(3):284–90.

    PubMed  CAS  Google Scholar 

  31. Falsafi R, Tatakis DN, Hagel-Bradway S, Dziak R. Effects of inositol trisphosphate on calcium mobilization in bone cells. Calcif Tissue Int 1991;49:333–9.

    PubMed  CAS  Google Scholar 

  32. Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA. The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 1996;137:4058–60.

    PubMed  CAS  Google Scholar 

  33. Fukuda A, Hikita A, Wakeyama H, Akiyama T, Oda H, Nakamura K, et al. Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. J Bone Miner Res 2005;20:2245–53.

    PubMed  CAS  Google Scholar 

  34. Garcia Palacios V, Robinson LJ, Borysenko CW, Lehmann T, Kalla SE, Blair HC. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 Cells by estrogen and phytoestrogens. J Biol Chem 2005;280:13720–7.

    PubMed  CAS  Google Scholar 

  35. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996;273:1236–8.

    PubMed  CAS  Google Scholar 

  36. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 2003;10:1165–77.

    PubMed  CAS  Google Scholar 

  37. Golden LH, Insogna KL. The expanding role of PI3-kinase in bone. Bone 2004 Jan;34(1):3–12.

    PubMed  CAS  Google Scholar 

  38. Hiura K, Lim SS, Little SP, Lin S, Sato M. Differentiation dependent expression of tensin and cortactin in chicken osteoclasts. Cell Motil Cytoskeleton 1995;30:272–84.

    PubMed  CAS  Google Scholar 

  39. Hoff AO, Catala-Lehnen P, Thomas PM, Priemel M, Rueger JM, Nasonkin I, et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest 2002 Dec;110(12):1849–57.

    PubMed  CAS  Google Scholar 

  40. Hollberg K, Hultenby K, Hayman A, Cox T, Andersson G. Osteoclasts from mice deficient in tartrate-resistant acid phosphatase have altered ruffled borders and disturbed intracellular vesicular transport. Exp Cell Res 2002;279:227–38.

    PubMed  CAS  Google Scholar 

  41. Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2005 Dec;208:106–25.

    PubMed  CAS  Google Scholar 

  42. Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD, et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 2004;19:235–44.

    PubMed  CAS  Google Scholar 

  43. Hurst IR, Zuo J, Jiang J, Holliday LS. Actin-related protein 2/3 complex is required for actin ring formation. J Bone Miner Res 2004 Mar;19(3):499–506.

    PubMed  CAS  Google Scholar 

  44. Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue J, Reddy SV, et al. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 2004;114:475–84.

    PubMed  CAS  Google Scholar 

  45. Insogna KL, Sahni M, Grey AB, Tanaka S, Horne WC, Neff L, et al. Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J Clin Invest 1997 Nov 15;100(10):2476–85.

    PubMed  CAS  Google Scholar 

  46. Ishikawa S, Arase N, Suenaga T, Saita Y, Noda M, Kuriyama T, et al. Involvement of FcRgamma in signal transduction of osteoclast-associated receptor (OSCAR). Int Immunol 2004;16:1019–25.

    PubMed  CAS  Google Scholar 

  47. Jaffe, HL, Bodansky, AM Chandler, JP. Ammonium chloride decalcification, as modified by calcium intake: the relation between generalized osteoporosis and osteitis fibrosa. J Experimental Med 1932;56:823–34.

    CAS  Google Scholar 

  48. Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology 1996;137:2187–90.

    CAS  Google Scholar 

  49. Kahn AJ, Simmons DJ. Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature 1975;258:325–7.

    PubMed  CAS  Google Scholar 

  50. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004;428:758–63.

    PubMed  CAS  Google Scholar 

  51. Kölliker, A. Die normale Resorption des Knochengewebes und ihre bedeutung für die entstehung der typischen knockenformen. Leipzig: Vogel; 1873.

    Google Scholar 

  52. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001;104:205–15.

    PubMed  CAS  Google Scholar 

  53. Kos CH, Karaplis AC, Peng JB, Hediger MA, Goltzman D, Mohammad KS, et al. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 2003;111:1021–8.

    PubMed  CAS  Google Scholar 

  54. Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA. Proinflammatory cytokine (TNFa/IL-1a) induction of human osteoclast formation. J Pathol 2002;198:220–7.

    PubMed  CAS  Google Scholar 

  55. Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 2003;32:1–7.

    PubMed  CAS  Google Scholar 

  56. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–76.

    PubMed  CAS  Google Scholar 

  57. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNFa induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000;106:1481–8.

    PubMed  CAS  Google Scholar 

  58. Lange U, Teichmann J, Muller-Ladner U, Strunk J. Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford) 2005;44:1546–8.

    CAS  Google Scholar 

  59. Lee SK, Kalinowski JF, Jacquin C, Adams DJ, Gronowicz G, Lorenzo JA. Interleukin-7 influences osteoclast function in vivo but is not a critical factor in ovariectomy-induced bone loss. J Bone Miner Res 21:695–702.

  60. Lee NK, Lee SY. Text modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J Biochem Mol Biol 2002;35:61–6.

    PubMed  Google Scholar 

  61. Li CY, Jepsen KJ, Majeska RJ, Zhang J, Ni R, Gelb BD, et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res 2006;21:865–75.

    PubMed  CAS  Google Scholar 

  62. Li P, Schwarz EM, O’Keefe RJ, Ma L, Boyce BF, Xing L. Abstract RANK signaling is not required for TNFalpha-mediated increase in CD11(hi) osteoclast precursors but is essential for mature osteoclast formation in TNFalpha-mediated inflammatory arthritis. J Bone Miner Res 2004 Feb;19(2):207–13.

    PubMed  CAS  Google Scholar 

  63. Li YP, Chen W, Liang Y, Li E, Stashenko P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 1999;23:447–51.

    PubMed  CAS  Google Scholar 

  64. Lu Z, Jiang YP, Ballou LM, Cohen IS, Lin RZ. Galpha q inhibits cardiac L-type Ca2+ channels through phosphatidylinositol 3-kinase. J Biol Chem 2005;280:40347–54.

    PubMed  CAS  Google Scholar 

  65. Marcantoni A, Levi RC, Gallo MP, Hirsch E, Alloatti G. Phosphoinositide 3-kinasegamma (PI3Kgamma) controls L-type calcium current (ICa,L) through its positive modulation of type-3 phosphodiesterase (PDE3). J Cell Physiol 2006;206:329–36.

    PubMed  CAS  Google Scholar 

  66. Mesiano S, Young IR, Baxter RC, Hintz RL, Browne CA, Thorburn GD. Effect of hypophysectomy with and without thyroxine replacement on growth and circulating concentrations of insulin-like growth factors I and II in the fetal lamb. Endocrinology 1987;120:1821–30.

    Article  PubMed  CAS  Google Scholar 

  67. Michael H, Harkonen PL, Vaananen HK, Hentunen TA. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 2005 Dec;20(12):2224–32.

    PubMed  CAS  Google Scholar 

  68. Miller JP, Izon D, DeMuth W, Gerstein R, Bhandoola A, Allman D. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J Exp Med 2002;196:705–11.

    PubMed  CAS  Google Scholar 

  69. Miyauchi A, Alvarez J, Greenfield EM, Teti A, Grano M, Colucci S, et al. Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem 1991 Oct 25;266(30):20369–74.

    PubMed  CAS  Google Scholar 

  70. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998;247:610–5.

    PubMed  CAS  Google Scholar 

  71. Mocsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, Spusta SC, et al. The immunomodulatory adapter proteins DAP12 and Fc receptor g-chain (FcRg) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 2004;101:6158–63.

    PubMed  CAS  Google Scholar 

  72. Moonga BS, Li S, Iqbal J, Davidson R, Shankar VS, Bevis PJ, et al. Ca(2+) influx through the osteoclastic plasma membrane ryanodine receptor. Am J Physiol Renal Physiol 2002;282:F921–32.

    PubMed  CAS  Google Scholar 

  73. Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB, et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 1998 Aug;18(8):4872–82.

    PubMed  CAS  Google Scholar 

  74. Nakamura I, Jimi E, Duong LT, Sasaki T, Takahashi N, Rodan GA, et al. Tyrosine phosphorylation of p130Cas in actin organization in osteoclasts. J Biol Chem 1998;273:11144–9.

    PubMed  CAS  Google Scholar 

  75. Nakamura I, Rodan GA, Duong le T. Distinct roles of p130Cas and c-Cbl in adhesion-induced or macrophage colony-stimulating factor-mediated signaling pathways in prefusion osteoclasts. Endocrinology 2003;144:4739–41.

    PubMed  CAS  Google Scholar 

  76. Nakamura I, Kadono Y, Takayanagi H, Jimi E, Miyazaki T, Oda H, et al. IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor associated factor 6/c-Src complex. J Immunol 2002;168:5103–9.

    PubMed  CAS  Google Scholar 

  77. Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 1997;27:266–9.

    Google Scholar 

  78. Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, et al. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci USA 1991;88:5134–8.

    PubMed  CAS  Google Scholar 

  79. Perrien DS, Achenbach SJ, Bledsoe SE, Walser B, Suva LJ, Khosla S, et al. Bone turnover across the menopause transition: correlations with inhibins and follicle-stimulating hormone. J Clin Endocrinol Metab 2006;91:1848–54.

    PubMed  CAS  Google Scholar 

  80. Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, et al. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 2005;280:40201–9.

    PubMed  CAS  Google Scholar 

  81. Radding W, Jordan SE, Hester RB, Blair HC. Intracellular calcium puffs in osteoclasts: localization and dependency on acid secretion activity. Exper Cell Res 1999;253:689–96.

    CAS  Google Scholar 

  82. Ryan MR, Shepherd R, Leavey JK, Gao Y, Grassi F, Schnell FJ, et al. An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proc Natl Acad Sci USA 2005;102:16735–40.

    PubMed  CAS  Google Scholar 

  83. Saika M, Inoue D, Kido S, Matsumoto T. 17beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology 2001;142:2205–12.

    PubMed  CAS  Google Scholar 

  84. Salo J, Lehenkari P, Metsikko K, Vanananen HK. Removal of osteoclast bone resorption products by transcytosis. Science 1997;276:270–3.

    PubMed  CAS  Google Scholar 

  85. Sarmay G, Angyal A, Kertesz A, Maus M, Medgyesi D. The multiple function of Grb2 associated binder (Gab) adaptor/scaffolding protein in immune cell signaling. Immunol Lett 2006;104:76–82.

    PubMed  CAS  Google Scholar 

  86. Sato T, Shibata T, Ikeda K, Watanabe K. Generation of bone-resorbing osteoclasts from B220+ cells: its role in accelerated osteoclastogenesis due to estrogen deficiency. J Bone Miner Res 2001;16:2215–21.

    PubMed  CAS  Google Scholar 

  87. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 2005 Jul 21;436(7049):424–7.

    PubMed  CAS  Google Scholar 

  88. Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem 1997;272:18636–43.

    PubMed  CAS  Google Scholar 

  89. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–19.

    PubMed  CAS  Google Scholar 

  90. Spinardi L, Marchisio PC. Podosomes as smart regulators of cellular adhesion. Eur J Cell Biol 2006;85:191–4.

    PubMed  CAS  Google Scholar 

  91. Sfikakis PP, Gourgoulis GM, Moulopoulos LA, Kouvatseas G, Theofilopoulos AN, Dimopoulos MA. Age-related thymic activity in adults following chemotherapy-induced lymphopenia. Eur J Clin Invest 2005;35:380–7.

    PubMed  CAS  Google Scholar 

  92. Sun L, Iqbal J, Dolgilevich S, Yuen T, Wu XB, Moonga BS, et al. Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption. FASEB J 2003;17:369–75.

    PubMed  CAS  Google Scholar 

  93. Sun L, Blair HC, Peng Y, Zaidi N, Adebanjo OA, Wu XB, et al. Calcineurin regulates bone formation by the osteoblast. Proc Natl Acad Sci USA 2005;102:17130–5.

    PubMed  CAS  Google Scholar 

  94. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, et al. FSH directly regulates bone mass. Cell 2006;125:247–60.

    PubMed  CAS  Google Scholar 

  95. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002;3:889–901.

    PubMed  CAS  Google Scholar 

  96. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000;408:600–5.

    PubMed  CAS  Google Scholar 

  97. Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 2002 Sep;8(9):943–9.

    PubMed  CAS  Google Scholar 

  98. Taylor PC, Williams RO, Feldmann M. Tumour necrosis factor alpha as a therapeutic target for immune-mediated inflammatory diseases. Curr Opin Biotechnol 2004;15:557–63.

    PubMed  CAS  Google Scholar 

  99. Teti A, Taranta A, Migliaccio S, Degiorgi A, Santandrea E, Villanova I, et al. Colony stimulating factor-1-induced osteoclast spreading depends on substrate and requires the vitronectin receptor and the c-src proto-oncogene. J Bone Miner Res 1998 Jan;13(1):50–8.

    PubMed  CAS  Google Scholar 

  100. Tezuka K, Tezuka Y, Maejima A, Sato T, Nemoto K, Kamioka H, et al. Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem 1994; 269:1106–9.

    PubMed  CAS  Google Scholar 

  101. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 1997;386:81–4.

    PubMed  CAS  Google Scholar 

  102. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 1997;234:137–42.

    PubMed  CAS  Google Scholar 

  103. Uhm WS, Na K, Song GW, Jung SS, Lee T, Park MH, et al. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology (Oxford) 2003;42:935–8.

    CAS  Google Scholar 

  104. van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci USA 2005;102:17507–12.

    PubMed  Google Scholar 

  105. Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G, et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 2005;11:394–9.

    PubMed  CAS  Google Scholar 

  106. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 2002;360:692–4.

    PubMed  CAS  Google Scholar 

  107. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 1997;272:25190–4.

    PubMed  CAS  Google Scholar 

  108. Yaroslavskiy BB, Li Y, Ferguson DJ, Kalla SE, Oakley JI, Blair HC. Autocrine and paracrine nitric oxide regulate attachment of human osteoclasts. J Cell Biochem 2004 Apr 1;91(5):962–72.

    PubMed  CAS  Google Scholar 

  109. Yaroslavskiy BB, Zhang Y, Kalla SE, Garcia Palacios V, Sharrow AC, Li Y, et al. NO-dependent osteoclast motility: reliance on cGMP-dependent protein kinase I and VASP. J Cell Sci 2005;118:5479–87.

    PubMed  CAS  Google Scholar 

  110. Yeh JK, Chen MM, Aloia JF. Ovariectomy-induced high turnover in cortical bone is dependent on pituitary hormone in rats. Bone 1996;18:443–50.

    PubMed  CAS  Google Scholar 

  111. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998;139:1329–37.

    PubMed  Google Scholar 

  112. Zaidi M, Inzerillo AM, Moonga BS, Bevis PJ, Huang CL. Forty years of calcitonin—where are we now? A tribute to the work of Iain Macintyre, FRS. Bone 2002;30:655–63.

    PubMed  CAS  Google Scholar 

  113. Zaidi M, Shankar VS, Tunwell R, Adebanjo OA, Mackrill J, Pazianas M, et al. A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. J Clin Invest 1995;96:1582–90.

    Article  PubMed  CAS  Google Scholar 

  114. Zauli G, Rimondi E, Nicolin V, Melloni E, Celeghini C, Secchiero P. TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood 2004;104:2044–50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Department of Veterans’ Affairs (HCB and MZ) and by NIH grants AG12951, AR47700 (to HCB), DK70526 and AG23176 (to MZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mone Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, H.C., Zaidi, M. Osteoclastic differentiation and function regulated by old and new pathways. Rev Endocr Metab Disord 7, 23–32 (2006). https://doi.org/10.1007/s11154-006-9010-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-006-9010-4

Keywords

Navigation