Skip to main content
Log in

Processing of Non-Ferrous Metallurgy Waste Slag for its Complex Recovery as a Secondary Mineral Raw Material

  • Published:
Refractories and Industrial Ceramics Aims and scope

The article presents an overview of the methods of processing slag from Waelz process, and various approaches employed by scientists globally, aimed at processing such slags. Despite several listed methods of processing slag from Waelz process, none entails a sufficient complex nature of its processing. In addition, the slag processed from the Waelz process, found in the dumps, has not been used as a secondary raw material to date. The elemental chemical composition of the slag has been determined, represented by compounds of calcium, silicon, iron, aluminum, carbon, and heavy non-ferrous metals, namely zinc and lead. Thus, it has been established that these slags continue to pollute the environment for many years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. R. Fechet, M. Zlagnean, A. Moanta, and L. Ciobanu, “Mining wastes — sampling, processing and using in anufacture portland cement,” Rom. J Min. Dep., 84, 67 – 70 (2010).

    Google Scholar 

  2. V. A. Chanturia, I. V. Shadrunova, and O. E. Gorlova, “Innovative processes of deep and complex processing of technogenic raw materials under conditions of new economic challenges,” International Scientific-Practical Conf. “Efficient Technologies for the Production of Non-Ferrous, Rare and Precious Metals,” Almaty: IMiO, 7 – 13 (2018). https://doi.org/10.31643/2018-7.45.

  3. M. A. Abdeev, A. V. Kolesnikov, and N. N. Ushakov, Waelz Processing of Zinc-Lead-Containing Materials [in Russian], Metallurgiya, Moscow (1985).

  4. S. M. Kozhakhmetov, Research in the Field of Theory and Technology of Autogenous Processes: selectas, Almaty (2005).

  5. V. A. Natalina, S. M. Kozhakhmetov, A. N. Budovsky, et al., “Joint smelting of copper-zinc concentrates and clinker of zinc production by an autogenous method,” KIMS, No. 6, 55 – 58 (1985).

  6. S. R. Minseitov, M. Yu. Radzhibaev, G. P. Miroevsky, et al., “Processing of clinker at BGMK: Abstracts of Reports at the Rep. Conf. “State and Prospects for the Introduction of Autogenous Processes in the Industry,” Balkhash, KazNIINTI, 15, 16 (1987).

  7. S. Kozhakhmetov, R. Z. Zhalelev, and S. A. Kvyatkovsky, “Tests for the processing of clinker in Vanyukov furnaces of Blkhashmed, Proceedings of the V Int. Conference on Chemistry and Technology of Chalcogenes, Dedicated to the 70th Anniversary of E. A. Buketov, Karaganda (1995).

  8. V. V. Mechev, F. A. Myzenkov, A. S. Kulenov, I. S. Bagaev, E. Z. Gumarov, O. V. Glupov, E. I. Kalnin, S. D. Smailov, and G. F. Klyuev, A. S. 1690393 USSR. Method for Processing Clinker of Zinc Production, publ. 06/15/94, Bul. No. 11.

  9. E. I. Kalnin, A. V. Grechko, A. V. Tarasov, et al., “Application of the Vanyukov process for processing clinker of zinc production,” Tsvetn. Metallurg, No. 8, 25 – 27 (1988).

  10. V. I. Ogorodnichuk, A. S. Kovalenko, V. I. Maltsev, Tsvetn. Metall., No. 10, 44, 45 (1983).

  11. A. V. Tarasov, V. I. Gel, and V. A. Podluzhnaya, A. S. 1097697 USSR. Charge for Processing of Zinc-Containing Materials by Fusion, publ. 06/15/1984, Bul. No. 22.

  12. Physicochemical Research in Lead and Zinc Metallurgy: Collection of Articles, under the general editorship of M. S. Getskin, Ust-Kamenogorsk, VNIItsvetmet (1980).

  13. M. A. Abdeev, A. I. Yusupova, V. M. Piskunov, and A. B. Kolesnikov, Extraction of Valuable Components from Dump Products of Heavy Non-Ferrous Metals Production [in Russian], Tsvetmetinformatsiya, Moscow (1980).

  14. V. P. Topchaev, N. V. Khodov, A. N. Davidson, and G. A. Eputaev, “The use of clinker fine coke to intensify the Waelz process,” Tsvetn. Metall., No. 1, 23, 24 (1972).

  15. A. V. Kolesnikov, A. G. Pusko, and A. A. Divak, “Influence of calcium and magnesium compounds on zinc stripping in the production of zinc white,” Tsvetn. Metall., No. 6, 15 – 17 (1977).

  16. A. P. Snurnikov, Complex Use of Mineral Resources in Nonferrous Metallurgy [in Russian], Metallurgiya, Moscow (1965).

  17. S. I. Mitrofanov, V. I. Meshchaninov, A. V. Kurochkina, et al., Combined Processes of processIng of Non-Ferrous Metal Ores [in Russian], Nedra, Moscow (1998).

  18. L. D. Vetterolf, “Electromelting of zinc clinker for mirror cast iron at the plant of the New Jersey Zinc company,” Proceedings of the 28th Conference on Electric Melting” 2, No. 15, 409 – 422 (1970).

  19. AIME World Symposium on Mining and Metallurgy of Lead and Zinc: Extractive Metallurgy of Lead and Zinc, ed. by C. H. Cotterill and J. M. Cigan, American Institute of Mining, Metallurgical, and Petroleum Engineers, New York (1970).

  20. V. Ya. Zaitsev, E. V. Margulis, Metallurgy of Lead and Zinc [in Russian], Metallurgiya, Moscow (1985).

  21. K. S. Sanakulov, A. S. Khasanov, Processing Slags of Copper Production [in Russian], FAN, Tashkent (2007).

  22. M. S. Zak, E. F. Chekhova, A. I. Dovershin, and V. S. Selyavin, “Semi-industrial tests of chloride sublimation firing of clinker in a fluidized bed,” Proceedings of Gintsvetmet “Improvement of Production Technology for Heavy Non-Ferrous Metals,” TsNIItsvetmet, Moscow, 35 – 43 (1983).

  23. M. S. Zak, E. F. Chekhova, “Investigation of the regularities of the chloride sublimation firing of clinker at ChECZ,” Proceedings of Gintsvetmet “Improvement of Production Technology for Heavy Non-Ferrous Metals,” TsNIItsvetmet, Moscow, 22 – 29 (1983).

  24. A. I. Doverman, Development and Research of the Main Nodes of Temperature Design of the Process of Chloride Sublimation Firing in a Fluidized Bed and their Influence on the Technology of the Process, author’s summary of Ph. D. in Engineering Science, Gintsvetmet, Moscow (1983).

  25. A. V. Tarasov, M. S. Zak, “Extraction of valuable components from clinkers of zinc production,” Tsvetn. Metallurg., No. 6, 46 – 48 (1990).

  26. S. S. Ospanov, Chloride Technology for Processing Lead-Zinc Middlings and Refractory Ores: author’s summary of Ph. D. in Engineering Science, Alma-Ata (1985).

  27. A. S. Kolesnikov, B. A. Kapsalyamov, O. G. Kolesnikova, et al., “Technology of zinc industry waste processing with obtaining ferroalloy and sublimates of non-ferrous metals,” Vestn. UUrGU, No. 1, 34 – 39 (2013).

  28. A. S. Kolesnikov, “Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry,” Russ. J. Non-Ferr. Metals, 56, No. 1, 1 – 5 (2015). https://doi.org/10.3103/S1067821215010113.

    Article  Google Scholar 

  29. I. K. Andrianov, A. V. Stankevich, “Finite-element model of the shell-shaped half-pipes forming for blanks behavior investigating during corrugating at the stamping,” International Science and Technology Conference EASTCONF 2019, Vladivostok, 01 – 02 March 2019, 1 – 3. https://doi.org/10.1109/EastConf.2019.8725322.

  30. Z. S. Gelmanova, D. M. Zhaksybaev, “Aspects of the formation and use of secondary resources in metallurgical production,” Mezhdunarodn. Zhur. Prikladn. Fund. Issled., No. 7, 749 – 753 (2016). URL: https://applied-research.ru/ru/article/view?Id=9954 (reference date: 23.01.2020).

  31. N. V. Vasilieva, E. R. Fedorova, “Process control quality analysis,” Tsvetn. Metall., No. 10, 70 – 76 (2020). https://doi.org/10.17580/tsm.2020.10.10.

  32. S. D. Sokova, N. V. Smirnova, “The choice of durable blocking waterproofing mathematical method,” J. Phys.: Conf. Series, 1425, Article 012046 (2019). https://doi.org/10.1088/1742-6596/1425/1/012046 (2019).

  33. L. L. Aksenova, L. V. Khlebenskikh, “The use of waste from enterprises of ferrous and non-ferrous metallurgy in the construction industry,” Technical Sciences in Russia and Other Countries: Proceedings of the III Intern. Scientific. Conf. (Moscow, July 2014), Buki-Vedi, Moscow, 106 – 108 (2014). URL https://moluch.ru/conf/tech/archive/90/5669.

  34. A. S. Kolesnikov, G. S. Kenzhibaeva, N. E. Botabaev, et al., “Thermodynamic modeling of chemical and phase transformations in a waelz process-slag-carbon system,” Refract. Ind. Ceram., 61, No. 3, 289 – 292 (2020). https://doi.org/10.1007/s11148-020-00474-4.

    Article  CAS  Google Scholar 

  35. B. N. Satbaev, A. I. Koketaev, E. O. Aimbetova, et al., “Environmental technology for the integrated disposal of man-made wastes of the metallurgical industry: self-curing, chemically resistant refractory mass, Refract. Ind. Ceram., 60(3), 318 – 322 (2019). https://doi.org/10.1007/s11148-019-00360-8.

  36. S. D. Sokova, N. V. Smirnova, “Bentonite grout backfill technology for underground structures,” IOP Conf. Ser.: Mater. Sci. Eng., 661, Article 012100 (2019). https://doi.org/10.1088/1757-899X/661/1/012100.

  37. N. V. Vasilyeva, P. V. Ivanov, “Implementation of fuzzy logic in the smelting process of control algorithms of copper-nickel sulfide materials,” J. Phys. Conf. Ser., 1384, Article 012065 (2019). https://doi.org/10.1088/1742-6596/1384/1/012065.

  38. A. K. Kozhakhan, Sh. M. Umbetova, “Scientific and technological analysis of the secondary processing of industrial waste from the power industry and mining and chemical enterprises,” Molod. Uch., No. 12, 54 – 57 (2009). URL https://moluch.ru/archive/12/898.

  39. I. Andrianov, A. Stankevich, “The stress-strain state simulation of the aircraft fuselage stretch forming in the ANSYS,” J. Phys.: Conf. Ser., 1333, Article 08202 (2019). https://doi.org/10.1088/1742-6596/1333/8/082002.

  40. A. S. Kolesnikov, I. V. Sergeeva, N. E. Botabaev, et al., “Chemical and phase transitions in oxidized manganese ore in the presence of carbon,” Steel Transl., 47(9), 605 – 609 (2017). https://doi.org/10.3103/S0967091217090078.

    Article  Google Scholar 

  41. I. K. Andrianov, S. V. Belykh, “The finite element simulation of the stamping die optimal topology,” International Science and Technology Conference EASTCONF 2019, Vladivostok, 1 – 3, 01 – 02 March 2019. https://doi.org/10.1109/EastConf.2019.8725410.

  42. G. V. Mannanova, Technique and Technology of Utilization of Solid Waste [in Russian], Znanie, Moscow (2007).

  43. S. D. Sokova, N. V. Smirnova, “Reliability assessment of waterproofing systems of buildings underground parts. 07/14/2018,” IOP Conf. Ser.: Mater. Sci. Eng., 365, Article 052028 (2018). https://doi.org/10.1088/1757-899X/365/5/052028.

  44. E. S. Abdrakhimova, “Study of acid-resistant material properties based on noferrous metallurgy waste using regresssion analysis,” Refract. Ind. Ceram., 56(5), 510 – 516 (2016). https://doi.org/10.1007/s11148-016-9878-9.

    Article  CAS  Google Scholar 

  45. N. V. Vasilyeva, N. I. Koteleva, and P. V. Ivanov, “Quality analysis of technological process control,” International Journal for Quality Research, 12(1), 111 – 128 (2018). https://doi.org/10.18421/IJQR12.01-07.

    Article  Google Scholar 

  46. Zhiwei Peng, Dean Gregurek, Christine Wenzl, and Jesse F. White, “Slag metallurgy and metallurgical waste recycling,” JOM, 68(9), 2313 – 2315 (2016). https://doi.org/10.1007/s11837-016-2047-2.

    Article  Google Scholar 

  47. A. S. Kolesnikov, V. N. Naraev, M. I. Natorhin, et al., “Review of the processing of minerals and technogenic sulfide raw material with the extraction of metals and recovering elemental sulfur by electrochemical methods,” Rasayan J. Chem., 13(4), 2420 – 2428 (2020). https://doi.org/10.31788/RJC.2020.1346102.

    Article  CAS  Google Scholar 

  48. N. V. Vasilyeva, P. V. Ivanov, “Development of a control subsystem to stabilize burden materials charging into a furnace,” J. Phys.: Conf. Ser, 1210, Article 012158 (2019). https://doi.org/10.1088/1742-6596/1210/1/012158

  49. L. B. Khoroshavin, V. A. Perepelitsyn, and D. K. Kochkin, “Problems of technogenic resources,” Refract. Ind. Ceram., 39(9/10), 366 – 368 (1998). https://doi.org/10.1007/BF02770604.

    Article  Google Scholar 

  50. I. K. Andrianov, “Optimization model of thermal loading of multilayer shells based on the strength criterion,” International Science and Technology Conference EASTCONF 2019, Vladivostok, October 2019, 1 – 4. https://doi.org/10.1109/FarEastCon.2019.8934017.

  51. Ilutiu-Varvara Dana-Adriana, “Researching the hazardous potential of metallurgical solid wastes,” Pol. J. Environ. Stud., 25(1), 147 – 152 (2016). https://doi.org/10.15244/pjoes/60178.

  52. S. D. Sokova, N. V. Smirnova, “Innovative technological solutions to ensure the reliability of operated buildings,” MATEC Web Conf., 251, Article 06018 (2018). https://doi.org/10.1051/matecconf/201825106018.

  53. A. S. Kolesnikov, I. V. Sergeeva, N. E. Botabaev, et al., “Thermodynamic simulation of chemical and phase transformations in the system of oxidized manganese ore – carbon,” Izvest. Ferr. Metallurgy, 60(9), 759 – 765 (2017). https://doi.org/10.17073/0368-0797-2017-9-759-765.

  54. L. Ferreira Welington, Erica L. Reis, and Rosa M. F. Lima, “Incorporation of residues from the minero-metallurgical industry in the production of clay-lime brick,” J. Clean. Prod., 87, 505 – 510 (2015). https://doi.org/10.1016/j.jclepro.2014.09.013.

    Article  CAS  Google Scholar 

  55. N. V. Vasilyeva, E. R. Fedorova, “Statistical methods of evaluating quality of technological process control of trends of main parameters dependence,” J. Phys.: Conf. Ser., 1118, Article 012046 (2018). https://doi.org/10.1088/1742-6596/1118/1/012046.

  56. B. N. Satbaev, A. I. Koketaev, E. O. Aimbetova, et al., “Environmental technology for the integrated disposal of man-made wastes of the metallurgical industry: self-curing, chemically resistant refractory mass,” Refract. Ind. Ceram., 60(3), 318 – 322 (2019). https://doi.org/10.1007/s11148-019-00360-8.

    Article  CAS  Google Scholar 

  57. I. K. Andrianov, “Modeling of effective material distribution of stamping equipment in forming processes,” International Science and Technology Conference EASTCONF 2019, Vladivostok, October 2019, 1 – 3. https://doi.org/10.1109/FarEastCon.2019.8933949.

  58. N. V. Vasilyeva, E. R. Fedorov, and N. I. Koteleva, “Real-time control data wrangling for development of mathematical control models of technological processes,” J. Phys.: Conf. Ser., No. 1015, Article 32067 (2018). https://doi.org/10.1088/1742-6596/1015/3/032067.

  59. B. Satbaev, S. Yefremova, A. Zharmenov, et al., “Rice husk research: from environmental pollutant to a promising source of organo-mineral raw materials,” Materials, 14(15), 4119 (2021). https://doi.org/10.3390/ma14154119.

    Article  CAS  Google Scholar 

  60. A. Boikov, V. Payor, R. Savelev, et al., “Synthetic data generation for steel defect detection and classification using deep learning,” Symmetry, 13(7), 1176 (2021). https://doi.org/10.3390/sym13071176.

    Article  CAS  Google Scholar 

  61. S. V. Efremova, “Scientific and technical solutions to the problem of utilization of waste from plant- and mineral-based industries,” Russ. J. Gen. Chem., 82, 963 – 968 (2012). https://doi.org/10.1134/S1070363212050295.

    Article  CAS  Google Scholar 

  62. N. Vasilyeva, E. Fedorova, and A. Kolesnikov, “Big data as a tool for building a predictive model of mill roll wear,” Symmetry, 13(5), 859 (2021). https://doi.org/10.3390/sym13050859.

    Article  CAS  Google Scholar 

  63. V. K. Klassen, “Energy saving in the production of cement,” Sovremen. Naukoyemk. Tekhnol., No. 1, 58, 59 (2004). URL: http://top-technologies.ru/ru/article/view?id=21554.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kolesnikov.

Additional information

Translated from Novye Ogneupory, No. 8, pp. 3 – 9, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.S., Serikbaev, B.E., Zolkin, A.L. et al. Processing of Non-Ferrous Metallurgy Waste Slag for its Complex Recovery as a Secondary Mineral Raw Material. Refract Ind Ceram 62, 375–380 (2021). https://doi.org/10.1007/s11148-021-00611-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00611-7

Keywords

Navigation