Skip to main content
Log in

Mechanism of Self-Propagating High-Temperature Synthesis of AlB2–Al2O3 Composite Powders

  • Published:
Refractories and Industrial Ceramics Aims and scope

The mechanism of self-propagating high-temperature synthesis (SHS) of AlB2–Al2O3 composite powders was studied using the combustion front quenching method (CFQM). The results showed that the combustion began with fusion of B2O3 and Al particles followed by mutual penetration of Al and B2O3 in the melt. X-ray patterns exhibited reflections for Al2O3 that were consistent with exchange of O atoms between Al and B through the reaction B2O3 + 2Al → 2B + Al2O3. A certain amount of B2O3 volatilized at higher temperatures and reacted with B to form gaseous B2O2. Al2O3 and B precipitated on the Al surface. Then, the produced B dissolved in the Al melt and reacted with Al to precipitate AlB12 particles. Finally, AlB12 transformed into AlB2 at the peritectic temperature during rapid cooling. Thus, the combustion could be explained by a dissolution-precipitation mechanism. The final products included AlB2 and Al2O3 particles and a certain amount of Al. A model of the dissolution-precipitation mechanism was proposed. The ignition temperature of the combustion was ~800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. T. B. Zhu, Y. W. Li, S. B. Sang, and Z. P. Xie, “Formation of nanocarbon structures in MgO–C refractories matrix: Influence of Al and Si additives,” Ceram. Int., 42, 18833 – 18843 (2016).

    Article  Google Scholar 

  2. A. P. Luz, T. M. Souza, C. Pagliosa, M. A. M. Brito, and V. C. Pandolfelli, “In situ hot elastic modulus evolution of MgO–C refractories containing Al, Si or Al–Mg antioxidants,” Ceram. Int., 42, 9836 – 9843 (2016).

    Article  Google Scholar 

  3. J. W. Lian, B. Q. Zhu, X. C. Li, et al., “Effect of in situ synthesized SiC whiskers and mullite phases on the thermo-mechanical properties of Al2O3–SiC–C refractories,” Ceram. Int., 42, 16266 – 16273 (2016).

    Article  Google Scholar 

  4. J. Wu, N. J. Bu, H. B. Li, and Q. Zhen, “Effect of B4C on the properties and microstructure of Al2O3–SiC–C based trough castable refractories,” Ceram. Int., 43, 1402 – 1409 (2017).

    Article  Google Scholar 

  5. W. M. Guo, D.W. Tan, L. Y. Zeng, et al., “Synthesis of fine ZrB2 powders by solid solution of TaB2 and their densification and mechanical properties,” Ceram. Int., (2017).

  6. O. Balci, D. Agaogullari, I. Duman, and M. Lutfi Ovecoglu , “Synthesis of CaB6 powders via mechanochemical reaction of Ca/B2O3 blends,” Powder Technol., 225, 136 – 142 (2012).

    Article  Google Scholar 

  7. H. Sunayama, M. Kawahara, and T. Mitsuo, “Effects of AlB2 addition on the resistance of oxidation of MgO–C refractories,” The PacRim 2nd Refractories Conference, Cairns, Australia, 1996.

  8. J. Chen, K. Chen, Y. G. Liu, et al., “Effect of Al2O3 addition on properties of non-sintered SiC–Si3N4 composite refractory materials,” Int. J. Refract. Met. Hard Mater., 46, 6 – 11 (2014).

    Article  Google Scholar 

  9. V. Muñoz and A. G. Tomba Martinez, “Thermal evolution of Al2O3–MgO–C refractories,” Procedia Mater. Sci., 1, 410 – 417 (2012).

    Article  Google Scholar 

  10. H. S. Tripathi and A. Ghosh, “Spinelisation and properties of Al2O3– MgAl2O4–C refractory: Effect of MgO and Al2O3 reactants,” Ceram. Int., 36, 1189 – 1192 (2010).

    Article  Google Scholar 

  11. L. Zhang, G. Q. Xiao, D. H. Ding, et al., “The effect of Al particle on AlB2–Al2O3 composite powders synthesized by self-propagating high temperature synthesis method,” J. Synth. Cryst. China, 45, 295 – 299 (2016).

    Google Scholar 

  12. H. Q. Yin, G. Q. Xiao, D. H. Ding, et al., “The effect of Mg on the phase composition of AlB2–Al2O3 composite powders synthesized by combustion synthesis,” J. Synth. Cryst. China, 45, 497 – 502 (2016).

    Google Scholar 

  13. E. Sirtl and L. M. Woerner, “Preparation and properties of aluminum diboride single crystals,” J. Cryst. Growth, 16, 215 – 218 (1972).

    Article  Google Scholar 

  14. D. Agaogullari, H. Gokce, I. Duman, and M. Lutfi Ovecoglu, “Aluminum diboride synthesis from elemental powders by mechanical alloying and annealing,” J. Eur. Ceram. Soc., 32, 1457 – 1462 (2011).

    Article  Google Scholar 

  15. A. C. Hall and J. Economy, “Preparing high- and low- aspect ratio AlB2 flakes from borax or boron oxide,” Aluminum Reduction, 2000.

  16. C. Deppisch, et al., “Processing and mechanical properties of AlB2 flake reinforced Al-alloy composite,” Mater. Sci. Eng., A, 225, 153 – 161 (1997).

    Article  Google Scholar 

  17. S. Postrach and J. Potschke, “Pressureless sintering of Al2O3 containing up to 20 vol. % zirconium diboride (ZrB2),” J. Eur. Ceram. Soc., 20, 1459 – 1468 (2000).

    Article  Google Scholar 

  18. L. Li, Y. R. Hong, J. L. Sun, Z. Y. He, and X. Y. Peng, “Formation of ZrB2 in MgO–C-composite materials using in-situ synthesis method,” J. Iron Steel Res. Int., 13(1), 70 – 74 (2006).

    Article  Google Scholar 

  19. G. Merzhanov and I. P. Borovinskaya, “A new class of combustion processes,” Combust. Sci. Technol., 10, 195 – 201 (1975).

    Article  Google Scholar 

  20. H. Q. Che, Y. Ma, and Q. C. Fan, “Investigation of the mechanism of self-propagating high-temperature synthesis of TiNi,” J. Mater. Sci., 46(8), 2437 – 2444 (2011).

    Article  Google Scholar 

  21. Q. C. Fan, H. F. Chai, and Z. H. Jin, “Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide,” Intermetallics, 9(7), 609 – 619 (2001).

    Article  Google Scholar 

  22. E. A. Levashova, Yu. S. Pogozhev, A. Yu. Potanin, et al., “Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation,” Ceram. Int., 40, 6541 – 6552 (2014).

    Article  Google Scholar 

  23. A. Mukasyan, A. Pelekh, and A. Varma, “Combustion synthesis in glasses systems under microgravity conditions,” J. Mater. Synth. Process., 5(5), 391 – 400 (1997).

    Google Scholar 

  24. N. Bertolion, U. Anselmi-Tamburini, F. Maglia, G. Spinolo, and Z. A. Munir, “Combustion synthesis of Zr–Si intermetallic compounds,” J. Alloys Compd., 288(1/2), 238 – 248 (1999).

    Article  Google Scholar 

  25. G. Q. Xiao, Q. C. Fan, M. Z. Gu, and Z. H. Jin, “Microstructural evolution during the combustion synthesis of TiC–Al cermet with larger metallic particles,” Mater. Sci. Eng., A, 425(1/2), 318 – 325 (2006).

    Article  Google Scholar 

  26. G. Q. Xiao, Q. C. Fan, M. Z. Gu, Z. H. Wang, and Z. H. Jin, Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC–Ni cermet,” Mater. Sci. Eng., A, 382(1/2), 132 – 140 (2004).

    Article  Google Scholar 

  27. C. L. Yeh and R. F. Li, “Formation of TiB2–Al2O3 and NbB2–Al2O3 composites by combustion synthesis involving thermite reactions,” J. Chem. Eng., 147(1), 405 – 411 (2009).

    Article  Google Scholar 

  28. L. Wang, Z. A. Munir, and J. B. Holt, “Synthesis of Al2O3–B4C composites via a thermite-based combustion reaction,” J. Mater. Synth. Process., 2(4) (1994).

  29. H. C. Yi, J. Y. Guigne, L. A. Robinson, A. R. Manerbino, and J. J. Moore, “Characteristics of porous B4C–Al2O3 composites fabricated by the combustion synthesis technique,” J. Porous Mater., 11(1), 5 – 14 (2004).

    Article  Google Scholar 

  30. S. K. Mishra, S. K. Das, and V. Sherbacov, “Fabrication of Al2O3–ZrB2 in situ composite by SHS dynamic compaction: A novel approach,” Compos. Sci. Technol., 67, 2447 – 2453 (2007).

    Article  Google Scholar 

  31. A. S. Rogachev, A. S. Mukasyan, and A. G. Merzhanov, “Structural transitions during gasless combustion of titanium-boron mixtures,” Dokl. Phys. Chem., 297(6), 1240 – 1243 (1987)].

    Google Scholar 

  32. J. P. Lebrat, A. Varma, and P. J. McGinn, “Mechanistic studies in combustion synthesis of Ni3Al and Ni3Al-matrix composites,” J. Mater. Res., 9(5), 1184 – 1190 (1994).

    Article  Google Scholar 

  33. G. Q. Xiao, Y. L. Fu, Z. W. Zhang, and A. D. Hou, “Mechanism and microstructural evolution of combustion synthesis of ZrB2–Al2O3 composite powders,” Ceram. Int., 41, 5790 – 5797 (2015).

    Article  Google Scholar 

  34. Z. Q. Yu and Z. G. Yang, “ZrB2/Al2O3 composite powders prepared by self-propagating high-temperature synthesis,” Trans. Nonferrous Met. Soc. China, 15(4), 851 – 854 (2005).

  35. S. K. Mishra, S. K. Das, and P. Ramachandrarao, “Self-propagating high-temperature synthesis of a zirconium diboride-alumina composite: a dynamic x-ray diffraction study,” Philos. Mag. Lett., 84(1), 1 – 46 (2004).

  36. D. N. Hendrickson, J. M. Hollander, and W. L. Jolly, “Core-electron binding energies for compounds of boron, carbon, and chromium,” Inorg. Chem., 9(3), 612 – 615 (1970); DOI: https://doi.org/10.1021/ic50085a035.

    Article  Google Scholar 

  37. K. Liu, X. L. Zhou, X. R. Chen, and W. J. Zhu, “Structural and elastic properties of AlB2 compound via first-principles calculations,” Physica B, 388(5), 213 – 218 (2007).

    Article  Google Scholar 

  38. Y. Birol, “Aluminothermic reduction of boron oxide for the manufacture of Al–B alloys,” Mater. Chem. Phys., 136(8), 963 – 966 (2012).

    Article  Google Scholar 

  39. T. Nagai, Ya. Ogasawara, and M. Maeda, “Thermodynamic measurement of (Al2O3 + B2O3) system by double Knudsen cell mass spectrometry,” J. Chem. Thermodyn., 41(11), 1292 – 1296 (2009).

    Article  Google Scholar 

  40. Yu. S. Pogozhev, A. Yu. Potanin, E. A. Levashov, and D. Yu. Kovalev, “The features of combustion and structure formation of ceramic materials in the Cr–Al–Si–B system,” Ceram. Int., 40(7), 16299 – 16308 (2014).

    Article  Google Scholar 

  41. Y. H. Liu, S. Yin, and H. Y. Lai, “Effects of combustion conditions on the characteristics of Al2O3/AlB12 composite powders produced by self-propagation high-temperature synthesis,” J. Inorg. Mater., 15(3), 473 – 479 (2000).

    Google Scholar 

  42. O. N. Carlson, Bull. Alloy Phase Diagrams, 11, No. 6, 560 – 566 (1990).

    Article  Google Scholar 

  43. H. Duschanek and P. Rogl, “The Al–B (aluminum–boron) system,” J. Phase Equilib., 15, 543 (1994).

    Article  Google Scholar 

  44. A. C. Hall, “Pathways to a family of low cast, high performance, metal matrix composites based on AlB2 in aluminum,” The University of Tulsa, 1999.

  45. A. C. Hall and J. Economy, “The Al (l) + AlB12 > AlB2 peritectic transformation and its role in the formation of high aspect ratio AlB2 flakes,” J. Phase Equilib., 21, 63 – 69 (2000).

    Article  Google Scholar 

  46. C. Deppish, G. Liu, A. Hall, et al., “The crystallization and growth of AlB2 single crystal flakes in aluminium,” J. Mater. Res., 13(12), 3485 – 3497 (1998).

    Article  Google Scholar 

  47. O. Savas and R. Kayikci, “A Taguchi optimization for production of Al–B master alloys using boron oxide,” J. Alloys Compd., 580, 232 – 238 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

The work was sponsored by the National Natural Science Foundation of China (Grant No. 51272203 and No. 51572212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Ding.

Additional information

Translated from Novye Ogneupory, No. 1, pp. 27 – 36, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Xiao, G., Ding, D. et al. Mechanism of Self-Propagating High-Temperature Synthesis of AlB2–Al2O3 Composite Powders. Refract Ind Ceram 60, 46–54 (2019). https://doi.org/10.1007/s11148-019-00307-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00307-z

Keywords

Navigation