Skip to main content
Log in

Crack Genesis in Refractories

  • Published:
Refractories and Industrial Ceramics Aims and scope

Genetic classification is given for cracks with respect to origin in all stages of refractory production and use. Microcracks in refractories generate both due to external action and also due to internal thermal, mechanical, physical and chemical stresses of the first and second order. External and internal energy stress generators create more than twenty genetic types of micro- and macrocracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Eloms are elastic composite refractory materials prepared from plastic organic mixes with a mineral filler.

References

  1. I. G. Maryasev, L. M. Mikhailovskaya, L. D. Bocharov, et al., “Pores: their classification and role in actual refractory material structures,” Refract. Indust. Ceram., 52(3), 202 – 211 (2011).

    Article  Google Scholar 

  2. V. A. Perepelitsyn and E. E. Grishenkov, “A classification of refractories: Properties,” Refract. Indust. Ceram., 45(5), 324 – 326 (2004).

    Article  Google Scholar 

  3. K. K. Strelov, Refractory Structure and Properties [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  4. u. D. Kingery, Introduction to ceramics (P. P. Budknikov and D. N. Poluboyarinov, editors) [Russian translation], Stroiizdat, Moscow (1964).

  5. V. V. Kolomeitsev, S. A. Suvorov, and E. F. Kolomeitseva, “Thermal stability of high-temperature materials. Part 1,” Refract. Indust. Ceram., 45(5), 327 – 332 (2004).

    Article  Google Scholar 

  6. A. I. Natsenko, “Thermal shock resistance of brittle materials,” in: Theoretical and Technological Studies in the Field of Refractories [in Russian], Metallurgiya, Moscow (1971).

  7. V. Dauknis, K. Kazakyavichus, G. Pranchyavishus, et al., Study of Heat Resistance of Refractory Ceramics [in Russian], Mintis Vilnyus (1971).

  8. N. P. Yushkin, Mechanical Properties of Minerals [in Russian], Nauka, Leningrad (1971).

    Google Scholar 

  9. D. P. Grogor’ev, Mineral Ontogeny [in Russian], Izd. Lvov. State Univ., Lvov (1961).

    Google Scholar 

  10. V. A. Perepelitsyn, Bases of Technical Mineralogy and Petrography [in Russian], Nedra, Moscow (1987).

    Google Scholar 

  11. V. A. Perepelitsyn, “ General features of mineral substance high-temperature conversion,” Refract. Indust. Ceram., 53(2), 104 – 107 (2012).

    Article  Google Scholar 

  12. G. Rouchka and H. Vitnau (editors), Refractory Materials. Structure, Properties, Testing: Handbook [Russian translation], Intermet Inzhiniring, Moscow (2010).

  13. S. V. Sverguzova, E. N. Gonchareva, and Yu,. V, Burakova, “Study of biocorrosion of building materials by mathematical experimental planning,” Stroit Materialy, No. 1, 234 – 35 (2011).

  14. O. N. Popov, P. T. Rybalkin,, V. A. Sokolov, and S. D. Ivanov, Production and Use of Fuzed Refractories [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  15. V. A. Rakhmanov, A. G. Marants, D. N. Poluboyarinov, and I. G. Duderov, “Reasons for cracking of melted and cast corundum objects,” Ogneupory, No. 7, 40 – 45 (1974).

  16. L. D. Bocharov, V. M. Bibaev, and V. A. Perepelitsyn, “Genetic classification of magnesia object scrap,” Ogneupory, No. 4, 20 – 23 (1992).

  17. L. D. Bocharov, I. G. Maryasev, A. G. Guzin, and V. G. Alfeeva, Classification of Product Nonconformity in OAO Kombinat Magnezit [in Russian], Izd. OAO Kombinat Magnezit, Chelyabinsk (2003).

  18. Yu. E. Pivinskii and A. G. Romashin, Quartz Ceramic [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  19. A. S. Berzhnoi, Multicomponent Alkali Oxide Systems [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  20. V. A. Perepelitsyn, L. D. Bocharov, and I. G. Maryasev, “Lining wear resistance in high-temperature tunnel furnaces,” Refract. Indust. Ceram., 50(1), 31 – 42 (2009).

    Article  Google Scholar 

  21. V. A. Perepelitsyn, K. V. Simonov, and L. D. Bocharov, “Hightemperature ageing of basic refractories in slag-free media,” Conf. “Real structure of inorganic heat-resistant and high-temperature materials,” Proc. Pervoural’sk (1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Perepelitsyn.

Additional information

Translated from Novye Ogneupory, No. 8, pp. 23 – 30, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perepelitsyn, V.A., Kapustin, F.L., Zemlyanoi, K.G. et al. Crack Genesis in Refractories. Refract Ind Ceram 57, 394–400 (2016). https://doi.org/10.1007/s11148-016-9991-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-016-9991-9

Keywords

Navigation