Skip to main content
Log in

Thermomechanical Analysis as a Tool for Optimizing Sintering Regimes for Ceramic Materials based on Zirconium Dioxide

  • Published:
Refractories and Industrial Ceramics Aims and scope

Data are studied and summarized for sintering kinetics of different zirconium dioxide powders, stabilized with yttrium and cerium oxides. It is shown that a study of pressed (or prepared by other compaction methods) billets in a SENTSYS Evolution 24 (Sentaram, France) thermomechanical analyzer/dilatometer makes it possible, without recourse to prolonged and energy consuming series of regimes in high-temperature furnaces, to optimize powder sintering parameters and makes it possible to predict the behavior of materials with different heat treatment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. V. Al’myasheva, É. N. Korytkova, A. V. Maslov, et al., “Preparation of aluminum oxide nanocrystals under hydrothermal conditions,” Neorgan. Materialy, 41(5), 540–547 (2005).

    Google Scholar 

  2. M. J. Šæepanoviæ, M. Grujiæ-Brojèin, Z. D. Dohèeviæ-Mitroviæ, et al., “Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy,” Sci. Sintering, 41, 67–73 (2009).

    Article  Google Scholar 

  3. A. S. Vanetsev and Yu. D. Tret’yakov, “Microwave synthesis of individual and multicomponent oxides,” Uspekhi Khimii, 76(5), 435–453 (2007).

    Google Scholar 

  4. E. S. Lukin, N. A. Makarov, A. I. Kozlov, et al., “Nanopowders for preparing a new generation of oxide ceramics,” Refr. Indus. Ceram., 50(6), 425–430 (2009).

    Article  Google Scholar 

  5. A. V. Shevchenko, E. V. Dudnik, A. K. Rubin, et al., “Hydrothermal synthesis of nanocrystalline powder in the system ZrO2–Y2O3–CeO2,” Poroshk. Metall. No. 1/2, 23–30 (2007).

  6. V. V. Popov and V. F. Petrunin, “Study of metastable phase formation and stability in nanocrystalline ZrO2,” Ogneupor. Tekhn. Keram., No. 8, 8–13 (2007).

    Google Scholar 

  7. C. Y. Chen, T. K. Tseng, S. C. Tsai, et al., “Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis,” Ceram. Internat., 34, 409–416 (2008).

    Article  Google Scholar 

  8. S. K. Tadokoro and E. N. S. Muccillo, “Physical characteristics and sintering behavior of ultrafine zirconia-ceria powders,” J. Europ. Ceram. Soc., 22, 1723–1728 (2002).

    Article  Google Scholar 

  9. V. B. Kul’met’eva, S. E. Porozova, B. L. Krasnyi, et al., “Preparation of zirconia ceramics from powder synthesized by a sol-gel method,” Refr. Indus. Ceram., 50(6), 438–440 (2009).

    Article  Google Scholar 

  10. V. N. Antsiferov, G. V. Bobrov, L. K. Druzhinin, et al., “Powder Metallurgy and Coating Deposition Higher Education Textbook [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  11. N. G. Rambidi and A. V. Berezkin, Physical and Chemical Bases of Nanotechnology [in Russian, FIZMATLIT, Moscow (2006).

  12. V. B. Kul’met’eva, S. E. Porozova, and E. S. Gnedina, “Synthesis of nanocrystalline zirconium dioxide, stabilized with yttrium oxide, for low-temperature sintering,” Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokryt., No. 2, 3–9 (2011).

  13. V. N. Antsiferov, S. E. Porozova, and V. B. Kul’met’eva, “Effect of water soluble polymer additives on the phase composition and size of zirconia particles during precipitation from salt solutions,” Glass Phys. Chem., 38(3), 322–326 (2012).

    Article  Google Scholar 

  14. S. E. Porozova, V. B. Kul’met’eva, I. R. Ziganyshin, et al., “Comparative characteristics of the results of determining monoclinic phase content in zirconium dioxide,” Vopr. Materialovedeniya, 61(1), 46–52 (2010).

    Google Scholar 

  15. M. Mazaheri, A. Simchi, and F. Golestani-Fard, “Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering,” J. Europ. Ceram. Soc., 28, 2933–2939 (2008).

    Article  Google Scholar 

  16. S. V. Markov and I. R. Ziganyshin, “Variation of material porosity based on zirconium dioxide prepared by gel casting,” Chemistry and Technology of New Substances and Materials: Proc. II All-Russia Youth Sci. Conf., 14–16 May, 2012. Syktyvkar Komi NTs UrO RAN, Syktyvkar (2012).

  17. S. Ye. Porozova, V. B. Kulmetyeva, and I. R. Ziganshin, “Molding of zirconia-based heat-resistant materials with nanoporosity and microporosity,” Nanomaterials Yearbook-2009. From Nanostructures, Nanomaterials, and Nanotechnologies to Nanoindustry, Nova Science Publishers, New York (2009).

  18. I. R. Zigan’shin,, S. Ye. Porozova, V. I. Karmanov, et al., “Change in industrial zirconium oxide powder and material properties based on mechanochemical activation,” Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokryt., No. 4, 11–15 (2009).

  19. I. R. Zigan’shin, S. E. Porozova, and Yu. F. Trapeznikov, “Preparation of porous material based on nanodispersed powder ZrO2 – 15 mol.% CeO2,” Vopr. Materialovedeniya, No. 4, 79–84 (2010).

    Google Scholar 

  20. O. V. Karban’, E. N. Khazanov, O. L. Khasanov, et al., “Inheritance and modification of nanostructured ZrO2 ceramic during manufacture,” Perspekt. Materialy, No. 6, 76–85 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 8, pp. 15 – 19, August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porozova, S.E., Kul’met’eva, V.B., Gurov, A.A. et al. Thermomechanical Analysis as a Tool for Optimizing Sintering Regimes for Ceramic Materials based on Zirconium Dioxide. Refract Ind Ceram 54, 307–311 (2013). https://doi.org/10.1007/s11148-013-9599-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-013-9599-2

Keywords

Navigation