Skip to main content
Log in

Tempered stable structural model in pricing credit spread and credit default swap

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

In this paper, we explore the features of a structural credit risk model wherein the firm value is driven by normal tempered stable (NTS) process belonging to the larger class of Lévy processes. For the purpose of comparability, the calibration to the term structure of a corporate bond credit spread is conducted under both NTS structural model and Merton structural model. We find that NTS structural model provides better fit for all credit ratings than Merton structural model. However, it is noticed that probabilities of default derived from the calibration of the term structure of a bond credit spread might be overestimated since the bond credit spread could contain non-default components such as illiquidity risk or asymmetric tax treatment. Hence, considering CDS spread as a reflection of the pure credit risk for the reference entity, we calibrate it in order to obtain more reasonable probability of default and obtain valid results in calibration of the market CDS spread with NTS structural model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Since we work under the risk neutral probability measure, the drift term of the firm value process is given by the risk-free interest rate.

  2. Refer to Rachev et al. (2011) for tempering functions of the other distributions.

  3. The error estimators are defined as follows:

    $$\begin{aligned} \text {AAE (Average Absolute Error)}&= \sum _{\text {spreads}} \frac{|\text {Market spreads} - \text {Model spreads}|}{\text {Number of spreads}} \nonumber \\ \text {APE (Average Prediction Error)}&= \text {AAE} \Bigg ( \sum _{\text {spreads}} \frac{\text {Market spreads}}{\text {Number of spreads}} \Bigg )^{-1} \nonumber \\ \text {ARPE (Average Relative Pricing Error)}&= \frac{\sum _{\text {spreads}} \frac{|\text {Market spreads} - \text {Model spreads}|}{\text {Market spreads}}}{\text {Number of spreads}} \nonumber \\ \text {RMSE (Root Mean}-\text {Square Error)}&= \sqrt{\sum _{\text {spreads}} \frac{(\text {Market spreads} - \text {Model spreads})^2}{\text {Number of spreads}}}. \end{aligned}$$
  4. ISDA (International Swaps and Derivatives Association) has led the global standardization of credit derivatives to gain market efficiency and reduce the potential legal uncertainty. Its standard model for pricing CDS contract sets the standard recovery rate as 40% for senior and 20% for subordinated.

References

  • Altman, E., Resti, A., & Sironi, A. (2004). Default recovery rates in credit risk modelling: A review of the literature and empirical evidence. Economic Notes, 33(2), 183–208.

    Article  Google Scholar 

  • Anand, A., Li, T., Kurosaki, T., & Kim, Y. S. (2016). Foster-hart optimal portfolios. Journal of Banking and Finance, 68, 117–130.

    Article  Google Scholar 

  • Applebaum, D. (2009). Lévy processes and stochastic calculus. Cambridge: Cambridge University Process.

    Book  Google Scholar 

  • Barndorff-Nielson, O. E., & Levendorskii, S. Z. (2001). Feller processes of normal inverse Gaussian type. Quantitative Finance, 1(3), 318–331.

    Article  Google Scholar 

  • Barndorff-Nielson, O. E., & Shephard, N. (2001). Normal modified stable processes. Economics Series Working Papers from University of Oxford, Department of Economics 72.

  • Bertoin, J. (1996). Lévy processes (Vol. 121). Cambridge: Cambridge University Process.

    Google Scholar 

  • Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. Journal of Finance, 31(2), 351–367.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Boyarchenko, S., & Levendorskii, S. Z. (2000). Option pricing for truncated Lévy processes. International Journal of Theoretical and Applied Finance, 3(3), 549–552.

    Article  Google Scholar 

  • Cariboni, J., & Schoutens, W. (2007). Pricing credit default swaps under Lévy models. Journal of Computational Finance, 10(4), 71–91.

    Article  Google Scholar 

  • Carr, P., Geman, H., Madan, D., & Yor, M. (2002). The fine structure of asset returns: An empirical investigation. The Journal of Business, 75(2), 305–332.

    Article  Google Scholar 

  • Carr, P., & Madan, D. (1998). Option valuation using the fast Fourier tansform. Journal of Computational Finance, 2, 61–73.

    Article  Google Scholar 

  • Chaplin, G. (2010). Credit derivatives: Trading, investing, and risk management. Hoboken, NJ: Wiley.

    Google Scholar 

  • Collin-Dufresne, P., & Goldstein, R. S. (2001). Do credit spreads reflect stationary leverage ratios? Journal of Finance, 56(6), 1929–1957.

    Article  Google Scholar 

  • Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. London: Chapman and Hall/CRC.

    Google Scholar 

  • Delianedis, G., & Geske, R. (2001). The components of corporate credit spreads: Default, recovery, tax, jumps, liquidity, and market factors. Working Paper, UCLA Anderson School.

  • Doetsch, G. (1970). Introduction to the theory and application of the Laplace transformation. New York, NY: Springer.

    Google Scholar 

  • Duffie, D. (1999). Credit swap valuation. Financial Analysts Journal, 55(1), 73–87.

    Article  Google Scholar 

  • Duffie, D., Schroder, M., & Skiadas, C. (1997). A term structure model with preferences for the timing of the resolution of uncertainty. Economic Theory, 9(1), 3–22.

    Article  Google Scholar 

  • Duffie, D., & Singleton, K. (1997). An economic model of the term structure of interest rate swap yields. Journal of Finance, 52(4), 1287–1321.

    Article  Google Scholar 

  • Eom, Y. H., Helwege, J., & Huang, J. Z. (2004). Structural models of corporate bond pricing: An empirical analysis. Review of Financial Studies, 17(2), 499–544.

    Article  Google Scholar 

  • Fang, F., Jönsson, H., Oosterlee, C. W., & Schoutens, W. (2010). Fast valuation and calibration of credit default swaps under Lévy dynamics. Journal of Computational Finance, 14(2), 1–30.

    Article  Google Scholar 

  • Fang, F., & Oosterlee, C. W. (2008). A novel pricing method for European options based on Fourier-cosine series expansions. SIAM Journal of Scientific Computing, 31(2), 826–848.

    Article  Google Scholar 

  • Geske, R. (1977). The valuation of corporate liabilities as compound options. Journal of Financial and Quantitative Analysis, 12(4), 499–544.

    Article  Google Scholar 

  • Giesecke, K., & Goldberg, L. R. (2004). Forecasting default in the face of uncertainty. Journal of Derivatives, 12(1), 14–25.

    Article  Google Scholar 

  • Gil-Peláez, J. (1951). Note on the inversion theorem. Biometrika, 38(3–4), 481–482.

    Article  Google Scholar 

  • Hilberink, B., & Rogers, L. (2002). Optimal capital structure and endogenous default. Finance and Stochastics, 6(2), 237–263.

    Article  Google Scholar 

  • Huang, J.-Z., & Huang, M. (2012). How much of the corporate-treasury yield spread is due to credit risk? Review of Asset Pricing Studies, 2, 153–202.

    Article  Google Scholar 

  • Hull, J. C. (2006). Options, futures, and other derivatives. Boston, MA: Prentice Hall.

    Google Scholar 

  • ISDA. (2014). 2014 ISDA credit derivatives definitions. International Swaps and Derivatives Association.

  • Jarrow, R., Lando, D., & Turnbull, S. (1997). A markov model for the term structure of credit risk spreads. The Review of Financial Studies, 10(2), 481–523.

    Article  Google Scholar 

  • Jarrow, R., & Turnbull, S. (1995). Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50(1), 53–85.

    Article  Google Scholar 

  • Jones, P. E., Mason, S. P., & Rosenfeld, E. (1984). Contingent claims analysis of corporate capital structures: An empirical investigation. Journal of Finance, 39(3), 611–625.

    Article  Google Scholar 

  • Kim, Y. S., Fabozzi, F., Lin, Z., & Rachev, S. T. (2012a). Option pricing and hedging under a stochastic volatility Lévy process model. Review of Derivatives Research, 15, 81–97.

    Article  Google Scholar 

  • Kim, Y. S., Giacometti, R., Rachev, S. T., Fabozzi, F., & Mignacca, D. (2012b). Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model. Annals of Operations Research, 201(1), 325–343.

    Article  Google Scholar 

  • Kim, Y. S., Lee, J., Mittnik, S., & Park, J. (2015). Quanto option pricing in the presence of fat tails and asymmetric dependence. Journal of Econometrics, 187(2), 512–520.

    Article  Google Scholar 

  • Koponen, I. (1995). Analytic approach to the problem of convergence of truncated Lévy flights towards the gaussian stochastic process. Physical Review E, 52(1), 1197–1199.

    Article  Google Scholar 

  • Küchler, U., & Tappe, S. (2013). Tempered stable distributions and processes. Stochastic Processes and Their Applications, 123(12), 4256–4293.

    Article  Google Scholar 

  • Lando, D. (1994). Three essay on contingent claims pricing. Ph.D. thesis, Cornell University.

  • Leland, H. E., & Toft, K. B. (1996). Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. Journal of Finance, 51(3), 987–1019.

    Article  Google Scholar 

  • Lewis, A. L. (2001). A simple option formula for general jump-diffusion and other exponential Lévy processes. http://www.optioncity.net.

  • Lin, H., Liu, S., & Wu, C. (2011). Dissecting corporate bond and CDS spreads. The Journal of Fixed Income, 20, 7–39.

    Article  Google Scholar 

  • Longstaff, F. A., Mithal, S., & Neis, E. (2005). Corporate yields spreads: Default risk or liquidity? New evidence from the credit default swap market. Journal of Finance, 60(5), 2213–2253.

    Article  Google Scholar 

  • Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuing risky fixed and floating rate debt. Journal of Finance, 50(3), 789–819.

    Article  Google Scholar 

  • Madan, D., & Schoutens, W. (2007). Break on through to the single side. SSRN 1003144.

  • Madan, D., & Unal, H. (1999). Pricing the risks of default. Review of Derivatives Research, 2(2), 121–160.

    Google Scholar 

  • Mandelbrot, B. (1963). New methods in statistical economics. Journal of Political Economics, 71(5), 421–440.

    Article  Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470.

    Google Scholar 

  • O’Kane, D. (2008). Modelling single-name and multi-name credit derivatives. Hoboken, NJ: Wiley.

    Google Scholar 

  • Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Rosiński, J. (2007). Tempering stable processes. Stochastic Processes and Their Applications, 117(6), 677–707.

    Article  Google Scholar 

  • Sato, K.-I. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Process.

    Google Scholar 

  • Schoutens, W., & Cariboni, J. (2009). Lévy processes in credit risk. Hoboken, NJ: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ik Kim.

Appendices

Appendix A

Suppose that from Eq. (10)

$$\begin{aligned} V(t) = \frac{V(0) \exp \Big ( rt + Z(t)\Big )}{E \Big [ \exp \Big (Z(t) \Big ) \Big ]} = V(0) \exp (X(t)) . \end{aligned}$$
(19)

As we have discussed before, bond price at time t under the risk neutral probability measure is

$$\begin{aligned} B(t,T)&= E \Bigg [ e^{-r(T-t)} \bigg ( D - \max \Big (D - V(T),\ 0 \Big ) \bigg ) \Biggm \vert \ \mathcal {F}(t) \Bigg ] \\&= B_{DF}(t, T) - e^{-R_{DF} (t,T)(T-t)} \\&\qquad \,E \Bigg [ \max \bigg ( D - V(t) \exp \Big (X(T) - X(t) \Big ),\ 0 \bigg ) \ \Biggm \vert \ \mathcal {F}(t) \Bigg ] . \end{aligned}$$

Let f(x) be the p.d.f of the random variable \(X(T)-X(t)\). \(X(T)-X(t)\) has the same distribution as \(X(T-t)\) by the stationary property of the NTS process. By complex inverse formula (Doetsch 1970), the p.d.f f(x) is given by:

$$\begin{aligned} f(x) = \frac{1}{2\pi } \int _{-\infty }^{\infty } e^{-i(u+i\rho )x} \phi _{X(T-t)} (u+i\rho ) du . \end{aligned}$$

Thus, we have

$$\begin{aligned}&E \bigg [ \max \bigg ( D - V(t) \exp \Big ( X(T) - X(t) \Big ),\ 0 \bigg ) \ \Bigm \vert \ \mathcal {F}(t) \bigg ] \\&\quad = \int _{-\infty }^{\log \frac{D}{V(t)}} \Big ( D - \exp (x + \log V(t)) \Big ) f(x) dx \\&\quad = \frac{1}{2\pi } \int _{-\infty }^{\log {\frac{D}{V(t)}}} \Big (D - \exp \big (x + \log V(t)\big )\Big ) \\&\qquad \times \,\int _{-\infty }^{\infty } e^{-i(u+i\rho )x} \phi _{X(T-t)}(u+i\rho ) du dx . \end{aligned}$$

If \(Im(z) > -1\) for \(z \in \mathbb {C}\), the following holds:

$$\begin{aligned} \int _{-\infty }^{k} e^{(1-iz)x} dx = \frac{e^{k(1-iz)}}{1-iz} , \end{aligned}$$

and if \(Im(z) > 0\),

$$\begin{aligned} \int _{-\infty }^{k} e^{-izx} dx = -\frac{e^{-ikz}}{iz} . \end{aligned}$$

Therefore, we obtain

$$\begin{aligned}&\int _{-\infty }^{\log \frac{D}{V(t)}} \Big (D - e^{(x + \log V(t))}\Big ) e^{-i(u+i\rho )x} dx \\&\quad = D \int _{-\infty }^{\log {\frac{D}{V(t)}}} e^{-i(u+i\rho )x} dx - V(t) \int _{-\infty }^{\log {\frac{D}{V(t)}}} e^{(1-i(u+i\rho ))x} dx\\&\quad = -D \frac{\exp \Big (-i(u+i\rho ) \log {\frac{D}{V(t)}}\Big )}{i(u+i\rho )} - V(t) \frac{\exp \Big ((1-i(u+i\rho )) \log {\frac{D}{V(t)}}\Big )}{1-i(u+i\rho )} \\&\quad = \Big (\frac{D}{V(t)}\Big )^{\rho -iu} \frac{D}{(\rho -iu)(1+\rho -iu)} , \end{aligned}$$

where \(\rho > 0\).

Also, we have

$$\begin{aligned} \phi _{X(T-t)}(u+i\rho )&= E \Big [ \exp \Big (i(u+i\rho )X(T-t)\Big ) \Big ] \\&= E \left[ \exp \left( i(u+i\rho ) \log \left( \frac{\exp \Big ( r(T-t) + Z(T-t) \Big ) }{E [\exp (Z(T-t))]} \right) \right) \right] \\&= \frac{e^{(iu-\rho ) R_{DF} (t,T) (T-t)} \phi _{Z(T-t)} (u+i\rho )}{\Big (\phi _{Z(T-t)}(-i)\Big )^{iu-\rho }} . \end{aligned}$$

Hence, the bond price can be computed by the following formula:

$$\begin{aligned} B(t, T)&= B_{DF}(t, T) \left( 1 - \frac{1}{\pi } \mathfrak {R}\int _0^\infty \left( \frac{D}{V(t)} \right) ^{\rho - iu}\right. \\&\quad \left. \times \,\frac{e^{(iu-\rho )R_{DF}(t,T)(T-t)} \phi _{Z(T-t)}(u+i\rho )}{(\rho -iu)(1+\rho -iu)(\phi _{Z(T-t)}(-i))^{iu- \rho }} du \right) , \end{aligned}$$

where \(\rho > 0\).

In the same way, we can obtain stock price under the risk neutral probability measure as follows:

$$\begin{aligned} S(t,\ T)&= E \left[ e^{-r(T-t)} \max \Big (V(T) - D,\ 0 \Big ) \ \Bigm \vert \ \mathcal {F}(t) \right] \\&= e^{-R_{DF}(t, T)(T-t)} E \bigg [ \max \Big ( V(t) \exp (X(T) - X(t)) - D,\ 0 \Big ) \ \Bigm \vert \ \mathcal {F}(t) \bigg ] \\&= B_{DF}(t, T)\ \frac{1}{\pi } \mathfrak {R}\int _0^\infty \left( \frac{D}{V(t)}\right) ^{\eta - iu}\\&\quad \times \, \frac{e^{(iu-\eta )R_{DF}(t,T)(T-t)} \phi _{Z(T-t)}(u+i\eta )}{(\eta -iu)(1+\eta -iu)(\phi _{Z(T-t)}(-i))^{iu- \eta }}\ du , \end{aligned}$$

where \(\eta < -1\).

Then, credit spread is

$$\begin{aligned} s_{\textit{credit}}\ (t, T)&= - \frac{1}{T-t} \log \Bigg ( \frac{B(t, T)}{B_{DF}(t, T)}\Bigg ) \\&= - \frac{1}{T-t} \log \Bigg ( 1- \frac{1}{\pi } \mathfrak {R}\int _{0}^{\infty } \Big (\frac{D}{V(t)}\Big )^{\rho -iu} \\&\quad \times \,\frac{ e^{(iu-\rho ) R_{DF} (t,T) (T-t) } \phi _{Z(T-t)} (u+i\rho )}{(\rho -iu)(1+\rho -iu) (\phi _{Z(T-t)}(-i))^{iu-\rho }} du \Bigg ) , \end{aligned}$$

where \(\rho > 0\).

Appendix B

From (19),

$$\begin{aligned} \textit{RR}_{\textit{NTS}} (T)&= E \Big [\ \frac{V(T)}{D} \Bigm \vert V(T)< D\ \Big ] \\&= E \Big [\ \frac{V(0)}{D} e^{X(T)} \Bigm \vert X(T) < \log \Big (\frac{D}{V(0)} \Big )\ \Big ] \\&= \frac{(V(0)/D)}{\textit{PD}_{\textit{NTS}}(T)}\ \int _{-\infty }^{\log \frac{D}{V(0)}} e^x f(x) dx , \end{aligned}$$

where f(x) is p.d.f. of NTS process X(T), and \(\textit{PD}_{\textit{NTS}}(T)\) is the probability of default.

By complex inverse formula,

$$\begin{aligned} \int _{-\infty }^{\log \frac{D}{V(0)}}&e^x f(x) dx = \int _{-\infty }^{\log \frac{D}{V(0)}}\ e^x\ \frac{1}{2 \pi }\ \int _{-\infty }^{\infty } e^{-i(u+i\delta )x} \phi _{X(T)} (u+i\delta )\ du\ dx \\&= \frac{1}{2\pi }\int _{-\infty }^{\infty } \phi _{X(T)} (u+i\delta )\ \int _{-\infty }^{\log {\frac{D}{V(0)}}} e^{(1+\delta -iu)x} dx\ du \\&= \frac{1}{\pi } \mathfrak {R}\int _{0}^{\infty } \Bigg ( \frac{(D/V(0))^{1+\delta -iu}}{(1+\delta -iu)} \Bigg )\ \Bigg ( \frac{e^{(iu-\delta )R_{DF}(0,T)T} \phi _{Z(T)} (u+i\delta )}{(\phi _{Z(T)} (-i))^{iu-\delta }} \Bigg ) du , \end{aligned}$$

where \(\delta > -1\).

Hence, for \(\delta > -1\), expected recovery rate \(\textit{RR}_{\textit{NTS}}(T)\) under the risk neutral probability measure is given by:

$$\begin{aligned} \textit{RR}_{\textit{NTS}} (T)= & {} \frac{1}{\pi } \Bigg ( \frac{1}{\textit{PD}_{\textit{NTS}}(T)} \Bigg )\ \mathfrak {R}\int _{0}^{\infty } \left( \frac{D}{V(0)} \right) ^{\delta -iu} \\&\frac{e^{(iu-\delta ) R_{DF} (0,T) T} \phi _{Z(T)} (u+i\delta )}{(1+\delta -iu)(\phi _{Z(T)} (-i))^{iu-\delta }}\ du . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.I., Kim, Y.S. Tempered stable structural model in pricing credit spread and credit default swap. Rev Deriv Res 21, 119–148 (2018). https://doi.org/10.1007/s11147-017-9135-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-017-9135-5

Keywords

JEL Classification

Navigation